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This paper will present various techniques for visualizing a split real even Fg representation in 2
and 3 dimensions using an Fs to Hy4 folding matrix. This matrix is shown to be useful in providing
direct relationships between Fs and the lower dimensional Dynkin and Coxeter-Dynkin geometries
contained within it, geometries that are visualized in the form of real and virtual 3 dimensional
objects.
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FIG. 1: Ejg Petrie projection

I. INTRODUCTION

Fig. 1 is the Petrie projection of the largest of the exceptional simple Lie algebras, groups and lattices
called Eg. Tt has 240 vertices and 6720 edges of 8 dimensional (8D) length v/2. Interestingly, in addition
to containing the 8D structures of Dg (aka. the rectified 8-orthoplex) and BCy (aka. the 8 demicube
or alternated octeract), Eg has been shown to fold to the 4D Polychora of Hy (aka. the 120 vertex
600-cell) and a scaled copy H®[4][6], where ® = % (1+/5) = 1.618... is the big Golden Ratio and
p= % (\/5 — 1) =1/® = ®—1 = 0.618... is the small Golden Ratio. Fig. 2 shows the folding orientation
of Eg and Dg Dynkin diagrams above the Hy and Hjz Coxeter-Dynkin diagrams (respectively).
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4D Perspective Projections
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FIG. 2: FEg and Dg Dynkin diagrams in folding orientation with their associated Coxeter-Dynkin
diagrams H4 and Hs

The 600-cell is constructed from the combination of the 96 vertices of the snub 24-cell and the 24
vertices of the 24-cell shown in Fig. 3. The 24-cell is self-dual and contained within both F; and the
triality symmetry of the D4 Dynkin diagram. It is interesting to note that it is constructed from the
16 vertices of the BCy tesseract (or 8-cell or 4-cube) and the 8 vertices of it’s dual, the 4-orthoplex (or
16-cell). All of these polychora can be found within Eg with the excluded 8-orthoplex. The snub 24-cell
is constructed from even permutations of {®,1,¢,0}. Also shown in Fig. 3 is the dual of the 600-cell,
namely the 120-cell with 600 vertices and a trirectified H4 Coxeter-Dynkin diagram (i.e. the filled node
is moved to the other end).
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FIG. 4: The 6-cube a) Petrie projection b) 3D perspective ¢) rhombic triacontahedron
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The specific matrix for performing this folding of Fg group vertices was shown[5] several years ago
to be that of (1). Notice that H4gyq = H4f,y such that it is symmetric with a quaternion-octonion
Cayley-Dickson like structure. Only the first 4 rows are needed for folding Fs to Hy, but the 8 x 8 square
matrix is useful in the rotation of 8D vectors by taking its inverse.

Ejy also contains the 6D structures of the 6-cube or hexeract as shown in Fig. 4. It has been shown
that using rows 2 through 4 of H44,q projects the 6-cube[1] down to the 3D Rhombic Triacontahedron[3].
This particular object is interesting in that it contains the Platonic solids including the icosahedron and
dodecahedron, and has been used to describe the ® related geometry leading to quasicrystals[2].

II. H4¢a MATRIX ANALYIS

x={ 0000 —®2SinZ% 0 1 0

y={ 0000 0 28inZr 0 2Sin3T (2)

— i 2T

z={ 0000 1 0  ®28mZ 0 }
X={ 0.0522642  1/4 0 —0.404508 —0.221395  1/4 0 0.404508 }
Y={ 0 —0.27216 —0.160853 0.203368 1/4 0.27216  0.497261 0.203368 } (3)
Z={ —0.154508 0.0845653 0 —0.13683  0.654508 0.0845653 0 0.13683 }

Projection of Eg to 2D (or 3D) requires 2 (or 3) basis vectors {X,Y, Z}. We start with those in (2),
which are simply the two 2D Petrie projection basis vectors of the 600-cell (aka. the Van Oss projection)
as shown in Fig. 5 a), with a 3rd z basis vector added for the 3D projection. Notice the 8D basis vectors
with zero in the first 4 columns (or dimensions).

Space-Time metric signature ST = {¢t,z,y, 2z} = {-1,1,1,1} (4)

Eigenvalues: H4gyq eVal = 2{ST, pST} (5)
H4;, eVallnv = {ST,®ST}/2
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FIG. 6: Eg projection showing Hy and H,® orthonormal face orientation in 2D and 3D perspective.
Only 1220 of 6720 edges are shown in order to prevent occlusion of vertices in 3D.
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Eigenvectors of H4; 4 eVec = (1) 8 (1) _01 (1) 8 _01 (1) (6)
0O 0 -1 -10 0 1 1
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The Eg projection basis (3) is obtained by {X,Y, Z} = H4;|,.{z,y, 2}. On one face (or 2 of 6 cubic
faces, which are the same), they project Eg to its 2D Petrie projection shown in Fig. 1. On another face
of this particular 3D projection is what would be found on all 6 faces of an orthonormal projection to
3D of the Hy 600-cell combined with a scaled Hy®, shown in 2D on Fig. 5 b) and in 3D in Fig. 6. It is
also interesting to note the {X,Y, Z} quaternion-octonion @ related scaling between dimensions {1,5}
and {3, 7}, and the + sign pairing of {2,6} and {4, 8}.

In addition, the {eigenvalue, eigenvector} systemics of H4g,q and H4f_011d relate to the general relativistic
(GR) space-time metric signature in 4 as quaternion parts of the octonion vectors in 5. The eigenvector
matrix is shown in 6, where Hdgoq = eVec? Diag(eVal).(eVec” )",
same as those in eVec.

This pattern of eigenvalues and eigenvectors strongly suggests that Eg (and Hy) passes through a
“geometric identity” as it folds (or unfolds), respectively. This makes establishing a unit determinant

The eigenvectors of Hélf;lld are the
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FIG. 7: Eg Dynkin diagram with Cartan, Schlafli, and Coxeter matrices

of these matrices interesting. The Det(H4ga) = (49)%(®? — ¢*) = 37.3499..., such that Adj(H4soq) =
Det(H4o1q) * H4f_011d. Establishing the Det(H4¢,4) = 1.00 by dividing by 37.3499 is easily done. Yet,
Det(H4go1a/((40)3 (@2 — p*)) = 0, suggesting the rows and columns of the matrices not independant.

1 10 0 0 0 0 0
01 -1 0 0 0 0 0
0 0 1 -1 0 0 0 0
00 0 1 -1 0 0 0
E8um=| _1 1 _1 _1 _1 _1 _1 _1 (7)
2 2 2 2 2 2 2 2
0o 00 0 0 1 1 0
0 0 0 0 1 -1 0 0
00 0 0 0 1 -1 0

There are several choices for the form of Eg, whether it be complex or split real (even or odd). For
the purposes of this work, the form selected is split real even (SRE). While the basic topology of the Fg
Dynkin diagram is unique, it has 8!=40320 permutations of node ordering. The node order used here is
given in Fig. 7. The 240 specific Eg group vertex values are determined from the simple roots matrix
E8¢m shown in (7). The resulting Cartan matrix and generated algebraic roots are directly dependent
on these as inputs.

E8Cartan - E85rm-E8£m (8)
E8SREvertex = E8z;m-E8root (9)

The Dynkin diagram was constructed as user input with the Mathematica “VisibLie” notebook. Fig.
7 was generated and exported from the referenced tool, as are all of the figures in this paper. It has the
same node ordering as the Fg Dynkin used in Fig. 2. The Cartan matrix can be generated directly by
the structure of the Dynkin diagram or from its relationship to the simple roots matrix (8). The positive
E algebra roots are generated by the Mathematica “SuperLie” package and listed along with its Hasse
diagram in Appendix A. The 120 positive and 120 negative algebra roots are then used to generate the
SRE FEs vertices using (9).

III. CONCLUSION

In terms of mathematical symmetry representing the beauty of Nature, Eyg is one of the most beautiful.
It contains a wealth of symmetries, including those of 2D projections, 3D polyhedrons, 4D polychora,
and those up to 8D. An SRE FEjg to H, folding matrix was determined and used to fold Fg to the 120
4D vertices of the H4 600-cell and 120 vertices of HyP.

The traditional 2D Petrie projections of high dimensional geometry were extended by adding a carefully
chosen third basis vector and generating 3D objects in either orthogonal or perspective views. The folding
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FIG. 8: The Eg to Hy 3D projection model used to laser etch optical crystal

matrix was shown to generate these basis vectors used in projecting the Fg vertices. These projected
3D objects can be realized as 3D models, which allow for their realization as animated rotations, models
laser etched in optical crystal, and in some cases 3D printed in plastic or even metal as in Fig. 8.
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