
3D & 4D Solids using
Quaternion Weyl Orbits from Coxeter-Dynkin 

Geometric Group Theory
0D    points & vertices     

  1D    lines & edges       
  2D faces & planes   
 3D  cells & polyhedra

        4D   cells & polychora           
5D-8D  cells & polytopes    

∞D     cells & polytopes    



Agenda
• Introducing the Mathematica™ based VisibLie-E8 Tool

– The Coxeter-Dynkin Visualizer (Groups, Weyl Orbits, Hasse Diagrams, etc.)

– The (Bi)Quaternion/(Bi)Octonion/Sedenion Engine (Fano Plane/Cube/Tesseract, etc.)

– The VisibLie_E8 Hyperdimensional Visualizer (2D/3D Projections, etc.)

• Introducing the Dimensions (0 to 8, ∞)
– 0D points, 1D edges & 2D faces (A2, B2=C2, G2, H2 Groups)

– 3D cells & polyhedra (A3, B3, H3 Groups)

– 4D  cells & polychora (A4, C4, D4, F4, H4 Groups)

– 5D-8D cells & polytopes (A5, C6, D6, E6, E7, E8=BC8+D8 Groups)

• Generating Solid Convex Hulls from Quaternions and their Weyl Group Orbits
– The 5 Platonic Solids, which includes duals

– The 13 Archimedean Solids and their Catalan Duals, with some Johnson and Near-miss Johnsons

• 4D Polychora w/Duals, including the Dual Snub 24-Cell
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Introducing the Mathematica™ based 
VisibLie-E8 Tool
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Introducing The VisibLie_E8 Tool
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The code is written to be able to run locally with full capability or in 
demonstrations over the web in the cloud. It contains 18 integrated 
mathematical demonstration sections that work together to understand 
the relationships between math, physics, chemistry, genetics,  neurology, 
AI, and more.

Just select the cells on the right and 
shift-click to run the entire notebook.



Introducing The VisibLie_E8 Tool
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The top bar changes to accommodate individual 
options and selections related to each numbered 
demonstration pane. Sometimes, user selectable 
options are provided within the output pane when 
there is insufficient room in the top bar.

The output pane can also be interactive with mouse 
click-drag features in both 2D and 3D.

The shown output is pane #4 for Coxeter-Dynkin 
visualizations.

The left-side bar is common to all 
demonstrations and allows visualizing 
results in 2D, 3D, stereo and anaglyph 
(red-cyan glasses), control the number of 
time-steps for video animations, etc.

You can select color schemes, view code 
snippets, change opacity, resolutions, 
turning on/off coordinate axis, vertex 
labels, turn on file exports, and change 
export file types.

The physics button shows theoretical 
quantum particle assignments based on E8 
group theoretic considerations.



The Coxeter-Dynkin Visualizer Demonstration Pane
                                                (#4)
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This button allows the detail visualization of the Hasse 
diagram, along with group theoretic concepts (i.e. Cartan 
matrix determinant, group dimensions, weights, positive 
roots, heights, etc.)

You can select which Coxeter-Dynkin group to view 
from the drop down or create a unique one using the 
main area of the interactive clickable UI to add nodes 
and change connection types.

This button allows the detail 
visualization of the maximal 
embeddings of the selected Lie 
Algebra, with options for 
selecting the number of 
dimensions to search and 
which of the found 
embeddings to display.
This checkbox is selected – so 
it is showing the embeddings 
of C6.

These buttons modify the Dynkin diagram based on which button is 
selected. The 2n Weyl orbit permutation slider allows the selection of 
which polytope orbit to visualize in 3D. Drop down menus at the right on 
the 2nd row allow for explicit selections for visualizing the quaternionWeyl 
orbit generated Platonic and Archimedian solids with Catalan duals as well 
as the A4 4D solids and their duals.



The (Bi)Quaternion / (Bi)Octonion / Sedenion Engine
                                                (#3)
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While there are only two possible variations 
of quaternions with one being standardized, there are 
480 different octonions. This visualizer allows you 
to select any of those and select various split octonions 
based on triads or dimensions.

The resulting Fano plane and animated cube (or 
tesseract for sedenions) can be shown, along with the 
multiplication tables in various formats, including the 
older IJKL style. Internal code sets options for working 
with complexified quaternion/octonion math as 
needed.

Example related math includes associators, sedenion 
zero divisors, and visualizations for G2 automorphisms 
and Coxeter Odd 4 graph are also shown.



The VisibLie_E8 Hyperdimensional Visualizer Pane
                                                (#5)
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This is the main geometry visualization engine for E8 
and all of its related sub-groups. While the code works 
in this UI, it also is used outside of the UI to create 
specific output, such as that used in this presentation.

There are a large number of predefined favorites in 
the drop-down menus, along with buttons to 
augment these.

There is also pane #18 provided as a UI for a huge 
number of visualization options. These are all 
selectable by switching panes or using a second 
window, or setting the option using Mathematica 
code outside of the demonstrations.
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Agenda
• Introducing the Mathematica™ based VisibLie-E8 Tool

– The Coxeter-Dynkin Visualizer (Groups, Weyl Orbits, Hasse Diagrams, etc.)

– The (Bi)Quaternion/(Bi)Octonion/Sedenion Engine (Fano Plane/Cube/Tesseract, etc.)

– The VisibLie_E8 Hyperdimensional Visualizer (2D/3D Projections, etc.)

• Introducing the Dimensions (0 to 8, ∞)
– 0D points, 1D edges & 2D faces (A2, B2=C2, G2, H2 Groups)

– 3D cells & polyhedra (A3, B3, H3 Groups)

– 4D  cells & polychora (A4, C4, D4, F4, H4 Groups)

– 5D-8D cells & polytopes (A5, C6, D6, E6, E7, E8=BC8+D8 Groups)

• Generating Solid Convex Hulls from Quaternions and their Weyl Group Orbits
– The 5 Platonic Solids, which includes duals

– The 13 Archimedean Solids and their Catalan Duals, with some Johnson and Near-miss Johnsons

• 4D Polychora w/Duals, including the Dual Snub 24-Cell



2D edges & faces (A2, B2=C2, H2, G2 Groups)

11  Triangle (A3)      Square (BC2)        Pentagon (H2)         Hexagon(G2)



2D edges & faces (A2, B2=C2, H2, G2 Groups)
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2D edges & faces (A2, B2=C2, H2, G2 Groups)
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2D edges & faces (A2, B2=C2, H2, G2 Groups)
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3D cells & polyhedra (A3, BC3, H3)
Showing Platonic Solids
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  Tetrahedron (A3)          Octahedron (BC3)            Icosahedron (H3)
   Self Dual             Cube (BC3 BiRectified)   Dodecahedron (H3 BiRectified)

8=2n=3 permutations of filled (aka. ringed) nodes 
which represent Weyl orbits that generate sets of 
vertices, edges, faces, and cells.  The names are 
generated based on permutations of:



3D cells & polyhedra (A3, B3, H3)
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3D cells & polyhedra (A3, B3, H3)
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4D cells & polychora (A4, C4, D4, F4, H4)
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 5-Cell (Self Dual)     16-Cell (BC4)     24-Cell (Self Dual)      600-Cell (H4)
         8-Cell (BC4 TriRectified aka. Tesseract)                120-Cell (H4 TriRectified)

16=2n=4 permutations of filled (aka. ringed) 
nodes represent which Weyl orbits that generate 
sets of vertices, edges, faces, and cells.  The 
names are generated based on permutations of:



4D cells & polychora (A4, C4, D4, F4, H4)
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4D cells & polychora (A4, C4, D4, F4, H4)
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4D cells & polychora (A4, C4, D4, F4, H4)
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4D cells & polychora (A4, C4, D4, F4, H4)
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4D cells & polychora (A4, C4, D4, F4, H4)
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5D-8D cells & polytopes
    (A5, C6, D6, E6, E7, E8=BC8+D8)
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5D-8D cells & polytopes
    (A5, C6, D6, E6, E7, E8=BC8+D8)
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5D-8D cells & polytopes
    (A5, C6, D6, E6, E7, E8=BC8+D8)
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BC6 Hexeract



5D-8D cells & polytopes
    (A5, C6, D6, E6, E7, E8=BC8+D8)
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5D-8D cells & polytopes
    (A5, C6, D6, E6, E7, E8=BC8+D8)
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5D-8D cells & polytopes
    (A5, C6, D6, E6, E7, E8=BC8+D8)
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5D-8D cells & polytopes
    (A5, C6, D6, E6, E7, E8=BC8+D8)
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256=2n=8 permutations of filled (aka. ringed) 
nodes which represent Weyl orbits that 
generate sets of vertices, edges, faces, and 
cells.  The names are generated based on: 
permutations of:



5D-8D cells & polytopes
    (A5, C6, D6, E6, E7, E8=BC8+D8)
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E8 Maximal Embeddings 
SO(16)=D8 Height 120=(112+4+4)+128’           . 

4    +     4

BC8



4   +     4

D8 Maximal Embeddings Height 112+4+4 . 

5D-8D cells & polytopes
    (A5, C6, D6, E6, E7, E8=BC8+D8)

32

C8 Maximal Embeddings Height 128+4+4           . 

4    +     4

4   +     4

+4+4
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Agenda
• Introducing the Mathematica™ based VisibLie-E8 Tool

– The Coxeter-Dynkin Visualizer (Groups, Weyl Orbits, Hasse Diagrams, etc.)

– The (Bi)Quaternion/(Bi)Octonion/Sedenion Engine (Fano Plane/Cube/Tesseract, etc.)

– The VisibLie_E8 Hyperdimensional Visualizer (2D/3D Projections, etc.)

• Introducing the Dimensions (0 to 8, ∞)
– 0D points, 1D edges & 2D faces (A2, B2=C2, G2, H2 Groups)

– 3D cells & polyhedra (A3, B3, H3 Groups)

– 4D  cells & polychora (A4, C4, D4, F4, H4 Groups)

– 5D-8D cells & polytopes (A5, C6, D6, E6, E7, E8=BC8+D8 Groups)

• Generating Solid Convex Hulls from Quaternions and their Weyl Group Orbits
– The 5 Platonic Solids, which includes duals

– The 13 Archimedean Solids and their Catalan Duals, with some Johnson and Near-miss Johnsons

• 4D Polychora w/Duals, including the Dual Snub 24-Cell



Generating Solid Convex Hulls 
from Quaternions and their Weyl Group Orbits

34

        D4
T   =Rectified        (if node 2 is in the middle of D4 or Parent if it is on left)
V1  =Parent          (if node 2 is in the middle of D4 or Rectified if it is on left)
V2  =BiRectified
V3  =TriRectified
T'   =CantiRuncinated (if node 2 is in the middle of D4 or BiCantiTruncated if it is on left)
T+T'=OmniTruncated

with Snub=O(0000)

This is from the Wikipedia page describing the mathematics behind the 4D 
quaternion polytopes generated in this presentation.



Generating Solid Convex Hulls 
from Quaternions and their Weyl Group Orbits
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These are snippets of my Mathematica implementation which supports the 
generation of the output shown.



Generating Solid Convex Hulls 
from Quaternions and their Weyl Group Orbits
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This is the output from 
the example code on the 
left.

This is example code that initiates the generation of the output.

hulls3D gathers the vertices by their 3D norm and calculates each 
concentric convex hull with increasing opacity and varying colors.

The Λ function takes as input a function (e.g. oCalc to only 
calculate the orbit vertices, vs. oShow which also generates the 
convex hulls using hulls3D). Scaling can be applied before or after 
calling Λ or oCalc.

In this case, the {α,β,γ} are quaternions {e1,e2,e3} or the group 
(e.g. “H3") and may depend on identifying a particular (optional 
or even scaled) Weyl orbit (i.e. {1,0,0} as the "Parent" of the 
diagram).  Shown are the 7=2rank=3-1 combinations of empty and 
filled nodes from the 3 node Coxeter-Dynkin diagrams, with 
{0,0,0} being a "Snub" (omitted here) and {1,1,1} 
being "OmniTruncated") .

The optional parameter "Osign" identifies one of 14 combinations 
of sign and/or position permutations (i.e. this one takes only Odd 
sign permutations from the cyclic position permutations (vs. all 
sign permutations given by the default "Rotate").



The 5 Platonic Solids, which includes their Duals
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A3             B3           H3

100
010
001
101
110
011
111

Tetrahedron (Self Dual)



The 5 Platonic Solids, which includes their Duals
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A3             B3           H3

100
010
001
101
110
011
111

Octahedron (Cube)



The 5 Platonic Solids, which includes their Duals
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A3             B3           H3

100
010
001
101
110
011
111

Dodecahedron (Icosahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Truncated Tetrahedron (Triakis Tetrahedron)

Mirrored Pairs - Irregular Small Rhombicuboctahedron



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Cuboctahedron (Rhombic Dodecahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Truncated Octahedron (Tetrakis Hexahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Small Rhombicuboctahedron (Deltoidal Icositetrahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Truncated Cube (Triakis Octahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Great Rhombicosidodecahedron (Disdyakis Dodecahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Snub Cube (Pentagonal Icositetrahedron)

Mirrored Pairs - Irregular Great Rhombicosidodecahedron (prev slide)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Truncated Dodecahedron (Triakis Icosahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Icosidodecahedron (Rhombic Triacontahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Truncated Icosahedron (Pentakis Dodecahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Small Rhombicosidodecahedron (Deltoidal Hexacontahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Snub Dodecahedron (Pentagonal Hexacontahedron)

Mirrored Pairs - Irregular Great Rhombicosidodecahedron (next slide)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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A3             B3           H3

100
010
001
101
110
011
111

Great Rhombicosidodecahedron (Disdyakis Triacontahedron)



The 13 Archimedean Solids with their Catalan Duals
with some Johnson and Near-miss Johnsons
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Pentakis Icosidodecahedron (Chamfered Dodecahedron)

These are 3D (x,y,z) convex hulls 
projected from 4D group H4

(shown here with 4th Dim w=0)
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Agenda
• Introducing the Mathematica™ based VisibLie-E8 Tool

– The Coxeter-Dynkin Visualizer (Groups, Weyl Orbits, Hasse Diagrams, etc.)

– The (Bi)Quaternion/(Bi)Octonion/Sedenion Engine (Fano Plane/Cube/Tesseract, etc.)

– The VisibLie_E8 Hyperdimensional Visualizer (2D/3D Projections, etc.)

• Introducing the Dimensions (0 to 8, ∞)
– 0D points, 1D edges & 2D faces (A2, B2=C2, G2, H2 Groups)

– 3D cells & polyhedra (A3, B3, H3 Groups)

– 4D  cells & polychora (A4, C4, D4, F4, H4 Groups)

– 5D-8D cells & polytopes (A5, C6, D6, E6, E7, E8=BC8+D8 Groups)

• Generating Solid Convex Hulls from Quaternions and their Weyl Group Orbits
– The 5 Platonic Solids, which includes duals

– The 13 Archimedean Solids and their Catalan Duals, with some Johnson and Near-miss Johnsons

• 4D Polychora w/Duals, including the Dual Snub 24-Cell
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The 600-Cell / 120-Cell Quaternion 3D Structure
(T)etrahedral elements=D4(24)=16-Cell(BC4)+8-Cell(TriRectified BC4)=24-Cell

Alternate (or "Dual" of Self Dual D4) T'=Rectified BC4 (16-Cell):
F4(48)=T+T' and T+T'+ϕ(T+T') are 2X(48 of 112) integer vertex parts of E8 folded to (I=H4)+ϕH4

Orthogonal projection in 3 dimensions with {x=1,y=1,z=1,w=0} 
all other permutations simply rotate the structure

ϕT’=

Sorted Positive (2*3+3*2) T’=

T' 24-Cell
in 3D

ϕT=

Sorted Positive (2*2+2*4) T=

T 24-Cell
in 3D

Archimedian Solid
Cuboctahedron

Catalan Solid
Rhombic Dodecahedron
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The 600-Cell / 120-Cell Quaternion 3D Structure
16-Cell+8-Cell=24-Cell Tetrahedral elements:

(T+ϕT) & (T'+ ϕT')
Orthogonal projection in 3 dimensions with {x=1,y=1,z=1,w=0} 

all other permutations simply rotate the structure

3D Norm r=1/ √ 2

3D Norm r=1

T' 24-Cell
in 3D

3D Cube 
from 4D 
Tesseract
or 8-Cell

(16 vertex)

3D 
Octahedron
+ 2@origin

from 4D 
16-Cell

(8 vertex)

3D Norm r= √3/2

3D Norm  r=1

Cube
Stellation 

vs.

Cube
Truncation

3D
 Rhombic 

Dodecahedron
(6+8=14 vertex)

3D
 Cubocta-
Hedron

(12 vertex)

T 24-Cell
in 3D



• Both the 120 vertex 600-Cell(120) and the 600 vertex 120-
Cell(600) can be generated from quaternion T(24) or T'(24) 
basis vectors one or two exponents (i,j=0-4) on one or two 
generator vertices (pi, pj) (see Koca 2011 et al.).

• The H4 600-Cell Icosahedral group I(120) (or its alternate I' 
using T' instead of T) is generated from pi only.
– This gives us the ability to map the 120-Cell vertices to each of the 5 

copies of 600-Cell vertices.

– This mapping includes the other orbits of the Weyl group W(D4) as 
well, e.g. M(192)=M1(96)+M2(96), and N(288).

• As done with the 600-Cell, implementing the 120-Cell in this 
manner allows the use of not only two the scaled copies of 
the 120-Cell (J & Jϕ).
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The 600-Cell / 120-Cell Quaternion Structure
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The 600-Cell / 120-Cell Quaternion 3D Structure
Snub 24-Cell (S=I-T) (96)              and                 Alternate (S‘=I’-T’)
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The 600-Cell / 120-Cell Quaternion 3D Structure
Dual Snub 24-Cell (144 )                    and       Alternate Dual Snub 24-Cell 



3D Hull Visualization of the H4 600-Cell Real & Quaternion Icosian (I)
I (120)                     and                       Alternate I’ (120)

α=p=                             .  
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The 600-Cell / 120-Cell Quaternion 3D Structure

I’ overall hull is similar to
I with 6 opposing squares 
vs. 
triangles in I

Same I & I’ outer hulls 
for all

{p, p*} ϵ I

Platonic Solid
Icosahedron

Platonic Solid
Dodecahedron

Platonic Solid(s)
Tetrahedrons-Cube

Platonic Solid
Octahedron

Archimedian Solid
Small Rhombicuboctahedron

Archimedian Solid
Icosidodecahedron

Archimedian Solid*

Truncated Cube

*Quasi-regular 
polygons

New Solid TBN?
Pentakis 

Icosidodecahedron



3D Hull Visualization of the 600-Cell Real & Quaternion Icosian (I)=H4 
E8(SRE)↔ H4(120)+H4ϕ(120) with particle assignments
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The 600-Cell / 120-Cell Quaternion 3D Structure

The 600-cell has an outer 3D hull of a Pentakis Icosidodecahedron (as shown above in slide #51)
Which is the dual to the Truncated Rhombic Triacontahedron or Chamfered Dodecahedron

(being the outer 3D hull of the 120-Cell orthogonally projected to 3D)



⚫ It is important to note that all the indices below also work for both the 
canonical 120-Cell (J) values as well as an alternate form (J').

− This (J) is implemented natively inside the VisibLie_E8 viewer based 
on the Koca's quaternion generation reproduces the canonical 
permutation vertex values exactly using  , where

 p=α=  .

⚫ This equality allows re-sorting of the canonical values to index to 
the I(120)x5 quaternion powers.

− The (J') alternate T quaternion generated vertex set is implemented 
by using the auxData.xls input data file.

⚫ This file contains the same sort as the J for its vertex data 
exported from Mathematica, which allows the use of the same 
Weyl W(D4) orbit indices.
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The 600-Cell / 120-Cell Quaternion 3D Structure

https://en.wikipedia.org/wiki/120-cell
https://en.wikipedia.org/wiki/120-cell
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The 600-Cell / 120-Cell Quaternion 3D Structure

c’=                         α =                                        c =

Orthogonal projection in 3 dimensions with 
{x=1,y=1,z=1,w=0} 

all other permutations simply rotate the structure

3D Hull Visualization of the 120-Cell (J)          and           Alternate J’ (600)   .
Using I and one exponent (a=0-4)

~½ the permutations  
of α ϵ I  w/c’(or c) ϵ 

T’(or T) produce  these 
J, or J’, (or 600 vertex 

hulls of I, I’, T, or T’) on 
each of the 4 3D 

subsets. 

With other perms not  
uniform within their 
subsets and having 
less uniform faces 

geometry.  

New Solid TBN 
(To-Be-Named)?

Archimedian Solid
Rhombicosidodecahedron

Truncated Rhombic Triacontahedron 
or Chamfered Dodecahedron
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The 600-Cell / 120-Cell Quaternion 3D Structure

J’ overall hull is the same as I’ 
Which is similar to I

with 6 opposing squares  
vs. triangles in I with identical

Norm’d hull radii & x5x counts!

3D Hull Visualization of the 120-Cell (J)          and           Alternate J’ (600)   .
Using two exponent (a=0-4,b=0,4)

α=

                                                                              

β =                              

This J’ is identical to 
the 1 exponent J’ →

← This J has identical  
Norm’d hull radii and 

vertex counts
to the 1 exponent J 

but with different hull 
shapes.

~½ the permutations of 
{α,β} as functions

of c ϵ T & q ϵ I produce 
J, J’, I, I’, T, or T’ on each 

of the 4 3D subsets. 

New Solid TBN?

New Solid TBN?
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3D Visualization of the 120-Cell (J’)
with particle assignments
produced with:

The 600-Cell / 120-Cell Quaternion 3D Structure

Is this outer 3D hull a new near-miss Johnson Solid?

3D Visualization of the 120-Cell (J):

The outer 3D hull is the Truncated Rhombic 
Triacontahedron or Chamfered Dodecahedron



66

The 600-Cell / 120-Cell Quaternion 3D Structure

The outer 3D hull is the Truncated Rhombic 
Triacontahedron or Chamfered Dodecahedron

3D Visualization of the 120-Cell (J) with an overlay of the Dual Snub 24-Cell to the right showing 
the Tetrahedrons establishing the pentagaonal faces:
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The 600-Cell / 120-Cell Quaternion 3D Structure
24-Cell (T) to 600-Cell (I)              and              600-Cell (I) to 120-Cell (J)

Animations building from exponent a=0-4



The 600-Cell / 120-Cell Quaternion 3D Structure

Examples of permutations that are not  
uniform within the 4 3D subsets of a 4D 
polytope and having less uniform faces 

geometry. 

Some approximate the Dual Snub24-Cell.

These are natural rotations of a 4D polytope 
when projected to 3D. The fact they emerge 
within the limited quaternion exponents is 

interesting.

3D Hull Visualization of the 120-Cell (J)          and           Alternate J’ (600)   .
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