Tag Archives: Physics

G2 as the automorphism group of the (split) octonion algebra

For more information on this, please see this Wolfram MathSource page.

This post describes the derivation of G2 automorphisms for each of the 480 unique octonion multiplication tables, as well as each of the 7 split octonions (created from negating the 4 row/column entries which are not members of the split #, which is an index to one of the 7 triads that make up the octonion).

The Exceptional Lie Algebra/Group G2 is identified by its Dynkin diagram and/or associated Cartan Matrix (also shown here with its Hasse diagram):
outDynkin-hasse

The particular octonion multiplication table selected in the example referenced above is associated in my model as a “Non Flipped E8 #164”. The multiplication table in various formats (IJKL, e_n, and Numeric) is:
octonionMulitplication-NonFlipped-164

The selected multiplication table (fm) is the basis for the following octonion symbolic math:
[wlcode](* Octonion math from the matrix using 8D vector representations for x and y, this has the Subscript[\[ScriptE], 0]=1 first *)
octProduct[a_, b_] := Block[{c3 = Array[0 &, 8]},
Do[c3[[If[i != j, Abs@fm[[i, j]] + 1, 1]]]+=Sign@fm[[i, j]] a[[i]] b[[j]],
{i, 8}, {j, 8}];
Chop@c3];

(* Complex, quaternion and octonian multiplication Subscript[\[ScriptE], a]\[SmallCircle]Subscript[\[ScriptE], b] *)
quat2oct@in_ := Block[{a3},
If[QuaternionQ@in,
a3 = FromQuaternion@in;
Switch[Length@a3,
0, Re@a3 + Im@a3 Subscript[\[ScriptE], 1],
2, If[Length@a[[1]] > 0, a3,
If[Head@a3 === Times, a3[[1]] a3[[2]],
1\[SmallCircle](Re@a3[[1]] +
Im@a3[[1]] Subscript[\[ScriptE], 1]) + a3[[2]]]],
3, Re@a3[[1]] + Im@a3[[1]] Subscript[\[ScriptE], 1] +
a3[[2 ;;]]],
“not Quaternion”] /. Most@Thread[octIJKL -> oct]];

(* Octonion math with conversions, leave final as octonion *)
SmallCircle[a_List, b_List] := octonion@octProduct[a, b];
SmallCircle[a_, b_Quaternion] := a\[SmallCircle]quat2oct@b;
SmallCircle[a_Quaternion, b_] := quat2oct@a\[SmallCircle]b;
SmallCircle[a_, b_Complex] := a\[SmallCircle]ToQuaternion@b;
SmallCircle[a_Complex, b_] := ToQuaternion@a\[SmallCircle]b;
SmallCircle[a_, b_] := oct2List@a\[SmallCircle]oct2List@b;

associator[a_List, b_List,c_List] := (a\[SmallCircle]b)\[SmallCircle]c-a\[SmallCircle](b\[SmallCircle]c);
associator[a_, b_, c_] :=associator[oct2List@a, oct2List@b, oct2List@c];[/wlcode]

Each set of 21 upper triangle pairs of octonion elements (utOct) has 14 “derivations” which are null
(alternatively, the NullSpace of the derivation vectors of utOct has 7 which are NOT null…)

A derivation pair D_{x, y} is defined by:
[wlcode](* Commutator *)
commutator[x_,y_]:=x\[SmallCircle]y-y\[SmallCircle]x;
CircleDot[x_,y_]:=commutator[x, y];

(* Commutator matrix *)
comMat[x_, y_] := x.y – y.x;
comMat[{x_, y_}] := comMat[x, y];

(* Derivation matrix and vector *)
derivation[x_,y_][a_]:=(x\[CircleDot]y)\[CircleDot]a-3 associator[x,y,a];
Square[{x_, y_, a_}] := derivation[x, y][a];
derMatrix[x_,y_]:=Table[Coefficient[\[Square]{x,y,oct[[i]]},oct[[j]]], {j, 7}, {i,7}];
derVector[x_,y_]:=derMatrix[x, y]//Flatten;[/wlcode]
The 14 null pairs define G2 for a SPECIFIC octonion multiplication matrix.

For each of 7 non-null derivations there is a triple of D_{x1, y1}=D_{x2, y2}+D_{x3, y3} related derivations.

There is a 7×21 matrix describing the non-NullSpace for the octonion given in the Wolfram MathSource reference above along with the 7 non-null triples. This is generated by g2Null:
[wlcode]g2Null:=NullSpace[derVector[Subscript[\[ScriptE], #1], Subscript[\[ScriptE],#2]]&@@@utOct//Transpose];

(* Formatting all non-Null upper triangle pairs derivation entries *)
outG2Null := MatrixForm[parallelMap[Grid[{
{Row[
Subscript[D, Row@Flatten@##] & /@
Partition[Flatten@{utOct[[Flatten@Position[#, -1]]]}, 2]]},{“==”},
{Row[
Subscript[D, Row@Flatten@##] & /@
Partition[Flatten@{utOct[[Flatten@Position[#, 1]]]}, 2]]}(*),
{“\[LongDash]\[LongDash]\[LongDash]\[LongDash]”}**)}] &,
g2Null]];[/wlcode]
octonionG2-nonNull-1a

getG2Null (below) retrieves two octonion multiplication matrices for the flipped and non-flipped index on one of 240 E8 particles.
[wlcode]formG2Null := MatrixForm@{
Row@{Style[Row@{“flip=”, flip}, Blue],
Style[” split # \[DownArrow],”, Red]},
g2NullTbl = Table[{
split,
setFM[#, flip, split];
outG2Null},
{split, 0, 7}];
Row@triads,
MatrixForm[Column[#, Center] & /@ noNull@# & /@ Table[
(* Color the common Der in each column *)
cmnD =first@Select[g2NullTbl[[All,2,1,i,1,3,1,1,All]],
Length@# == 1 &];
cmnDclr = Style[cmnD, Magenta];
If[j == 1, {“”, Row@{
(* Highlight the missing index in the triple D_{x,y} for each row *)
Style[Complement[Range@7,Union@Flatten@g2NullTbl[[All,2,1,i,1,3,1,1,All,2,1]]][[1]],Darker@Green],
g2NullTbl[[1, 2, 1, i]] /. cmnD -> cmnDclr}},
(* Display only non-null derivations from the splits if not the same as the base octonion *)
If[g2NullTbl[[1,2,1,i]] =!= g2NullTbl[[j,2,1,i]],
{Style[g2NullTbl[[j, 1]], Red],
g2NullTbl[[j,2,1,i]] /. cmnD -> cmnDclr}]],
{i,7},{j,8}]]} &;

getG2Null := ColumnForm[{
Style[Row@{“E8#=”, #}, Darker@Green],
Row@{flip = False; formG2Null@#, flip = True; formG2Null@#}},
Center] &;[/wlcode]

Here we show the output of getG2Null for the example non-Flipped E8 #164):
octonionG2-nonNull-1e
Emergent patterns:

  1. For each of the 7 non-null derivation triples (the first column of the 7 rows), there are precisely 3 (of the 7) split octonions that don’t share the exact same non-null triple derivation pair as the parent (non-split) octonion (these deviations are shown in column 2 thru 4, along with the associated Fano plane diagrams for the parent and 7 split octonions of E8 #164).
  2. Each non-null derivation triple contains 6 of 7 indices, and each row is missing a different index (highlighted in green before the column 1 triple). The sequence of missing element numbers in each row of the given example follows the row number.
  3. It is only the equality relationship (signs) of the non-Null triple that change in 3 of the 7 splits, not the D_{x,y} itself.
  4. There are always 2 pairs of 2 D_{x,y} which are negative (i.e. with a -1 entry in the NullSpace matrix located above the “==”) that occur across the row.
  5. There is always a common positive D_{x,y} (i.e. with a +1 entry in the NullSpace matrix located below the “==”) in each entry of the row (colored magenta). The common positive entries in the 7 rows suggest a “distinguished” non-null indicator for the 14=21-7 G2 automorphism.
  6. All octonion multiplication matrices have the first 3 rows of distinguished entries of {6,7},{5,7} and {5,6} in that order (i.e. the last 2 rows of utOct).
  7. There are several possible choices for G2 automorphism sets of 14 elements within each of 480 octonions based on the 7 non-Null entries. Interestingly, there are the 4 sets of rows in utOct which sum to 14 elements, specifically rows {{1, 2, 4}, {1, 2, 5, 6}, {1, 2, 4, 6}, {2, 3, 4, 5}}). The distinguished entries of the flipped E8 #164 example below (as in the MathSource post referenced above) suggests a G2 created by rows {1,2,4} of utOct. Although, not all G2 sets must use complete rows as in this example.

This is octonionG2-nonNull, a 480 page (15 MB) which lists each of the 7 non-Null parent octonion derivations (and for each of those, the 3 other split octonion non-null derivations) which are NOT a member of the 14 null derivations for each of 480 octonion multiplication matrices and 7 splits for each (480*8=3840). It includes the Fano plane mnemonics for the parent and 7 split octionions. This is a smaller 240 page (1MB) version of octonionG2-nonNull.pdf without the Fano plane mnemonics.

Octonion triality testing

I am working on validating some theoretical work on the triality automorphisms of the split octonions. This is a post with preliminary work on that… for those who are interested 🙂

BTW – It requires the here.

An addendum to the original post (below):
octonion-duality-triality

[WolframCDF source=”http://theoryofeverything.org/TOE/JGM/octonion triality checks.cdf” width=”900″ height=”8000″ altimage=”http://theoryofeverything.org/TOE/JGM/octonion triality checks.png” altimagewidth=”900″ altimageheight=”8000″]

Visualizing E6 as a subgroup of E8 for a Leptoquark SUSY GUT?

MyToE was mentioned in a Luboš Motl blog post comment, so I thought I would throw out a few ideas and offer to help Luboš visualize the models/thinking around developing an E6 Leptoquark SUSY GUT.

Here are the E6 Dynkin related constructs, including the detail Hasse visualization.
outDynkinE6

For this post, I use Split Real Even (SRE) E8 vertices created by dot product of the 120 positive (and 120 negative roots) with the following Simple Roots Matrix (SRM), which generates the Cartan as well:
simple roots matrix

This is a list of E6 vertices as a subset of SRE E8 by taking off the orthogonal right-side 2 dimensions (or Dynkin nodes in red) vertices with identical entries).
intersection-E8-E6

This is an interesting E6 projection with basis vectors of:
X={2, -1, 1, 1/2, -1, -(1/2), 0, 0}
Y= {0, 0, Sqrt[3], Sqrt[3]/2, Sqrt[3], Sqrt[3]/2, 0, 0}
outE80E6

Adding a third Z={0,0,Sqrt[3],Sqrt[3]/2,Sqrt[3],Sqrt[3]/2,0,0}, we get a 3D projection:
outE80E6-3d

Luboš> “the maximum subgroup we may embed to E6 is actually SO(10)×U(1).”

Since D5 (which is the same as E5 in terms of the Dynkin diagram topology) relates to SO(10), it is interesting to look at the complement of E6 vertices and the 40 D5 vertices contained in E6 (leaving 32):
complement-E6-D5

Here is the D5 Dynkin and its Cartan algebra:
outDynkinD5-Hasse

Opinion- Pentaquarks

The recent announcement for the potential LHC realization of composite particle resonance of the pentaquark (or meson-baryon molecule) is interesting. This, along with a prior confirmation of the dimeson tetraquark Z(4430), and prognostications for hexaquarks (or dibaryons), expand the “zoo” of composite particles now numbering in the thousands.

If by chance we can use these new discoveries to discern the mathematical pattern (symmetry) well enough to predict the particle masses, lifetimes, branching ratios and CKM (quark) PMNS (neutrino) mixing matrix ratios – that would be COOL!

Yet, given the current size of this zoo of particles, it seems that adding a few more bags of quarks to the mix may not do the trick, but I am always hopeful.

IMNSHO (In My Not So Humble Opinion ;-)… it is more a task of “naming the animals”.

or in Ernest Rutherford’s words:
“All science is either physics or stamp collecting.”

“The pentaquark search may be physics’ version of ‘stamp collecting'”. JGM

mesons

outHadron

outHadron

Hexaqark with “Physics” shapes:
hadrons

Decays:
decays

My attempt to organize the stamp collection of chemistry into a 4D periodic table:
4DPeriodicTable-1

A new Lisi Arxiv paper along with a new E8 projection

For Lisi’s latest ideas on a “Lie Group Cosmology (LGC)” ToE, see http://arxiv.org/abs/1506.08073.
Be warned, it is over 40 heavy pages.

He also posted a new projection on FB.
LatestLisiProjection

He uses the (H)orizontal and (V)ertical projection vectors of:
H = {.12, -.02, .02, .08, .33, -.49, -.49, .63};
V = {-.04, .03, .13, .05, .20, .83, -.45, .19};

Here it is rendered with H and V reordered to match in VisibLie_E8 tool:
H/V order is {2, 3, 4, 7, 1, 6, 5, 8};
Note: the particle assignments in my VisibLie_E8 tool (as in the Interactive visualizations on this website) are not the same and have different triality rotation matrices.
newLisi

The pic below has a slightly altered projection that creates a bit more hexagonal symmetry and integer projections (without deviating more than .05 off his coordinates):
Note: vertex colors indicate the number of overlapping vertices.
This uses H/V projection vectors (reverse ordered back to his coordinate system).
Symbolic:
H={3 Sqrt[3]/40, 0, 0, 3 Sqrt[3]/40, 1/3, 1/2, 1/2, -2/3};
V={-3/40, 0, 3/20, 3/40, 3/20, -4/5, 1/2, -3/20}};
Numeric:
H={.13, 0., 0.,.13,.33,.5, .5,-.66`};
V={-.075, 0., .15, .075, .15,-.8, .5,-.15};
LisiNewNormed

Here is Lisi’s version with my coordinates:
LisiNew2

Here is a version of the full hexagonal (Star of David) triality representation using coordinates I found with the same process used above. Particle color, shape and size are based on the assigned particle quantum numbers (spin, color, generation). There are 86 trialities indicated by blue triangles.
Projection vectors (in my “physics” coordinate system) are:
H={2-4/Sqrt[3],0,0,-Sqrt[(2/3)]+Sqrt[2],0,0,Sqrt[2],0};
V={0,-2+4/Sqrt[3],Sqrt[2/3]-Sqrt[2],0,0,0,0,-Sqrt[2]};

StarOfDavid1

See also a rectified version of this, where the particle overlaps show the inner beauty of E8!!
F4Rect-Sacred-1b-StarOfDavid
The underlying quantum symmetry patterns within this coordinate system are:
Slide4

Slide9

Slide11

Slide10

New features and options – Lite version, MIDI Music, Hebrew/English Nearest Word Gematria

I created a “Lite” version (4-10 Mb) of the VisibLie_E8 CDF/NB/Intereactive application, so now you can interact with the main E8 and particle physics panes w/o loading the full 100 Mb version (which contains multiple versions of parametric spherical harmonics for atoms, Molecule/DNA protein data, 4 gematria word value indexed Hebrew/Greek Bibles, solar system and Universe simulation dynamics, etc.)

I added some demonstration capability to the Chords (Beauty of Math/Music) pane. It now has full instrumentation for creating MIDI tones along with the various tones in available chords.

outChords

I added a cool Nearest Word Graph to the Gematria pane. This uses the Wolfram curated LanguageData / DictionaryLookup to find Hebrew and English words that are close in spelling (no Greek available yet)-:

gematria-snap1

I also added a more extensive cross index of common (or “interesting”) words found in the Hebrew/Greek Bibles used in the Gematria pane. These are:
English-Greek-Hebrew

Universal Time’s Arrow as a Broken Symmetry of an 8D Crystallographic E8 folding to self dual H4+H4φ 4D QuasiCrystal spacetime

Animations of Wolfram’s Cellular Automaton rule 224 in a 3D version of Conway’s Game of Life.

While this does not yet incorporate the E8 folding to 4D H4+H4φ construct, the notion of applying it, as the title suggests, to a fundamental particle physics simulation of a “Quantum Computational Universe” or an emergent (non)crystallographic genetic DNA (aka. Life) is an interesting thought…

Watch a few notional movies, some in left-right stereo 3D. Best viewed in HD mode.

More to come, soon!
outAI2

These are snapshots of all the different initial conditions on the rule 224. Each set of 25 has a different object style and/or color gradient selection.
AI 1-25

AI 26-50

AI 51-75

AI 76-100

AI 101-125

AI 126-150

AI 151-175

AI 176-200

AI 201-225

AI 226-250

AI 251-253