Category Archives: Physics

Updated Analysis of RCHO Bi-Octonion Standard Model (Cohl Furey Papers)

I’ve updated an analysis I did on the work of Cohl Furey’s papers from several years ago. Since then, she added another paper: https://arxiv.org/abs/1910.08395v1

The short pdf version of my analysis (with some detail cells collapsed) is here (34 pages), and a longer version is here (no collapsed cells and 51 pages). These pdf’s are a direct output from my Mathematica (MTM) Notebook. I will follow up with a LaTex paper on the topic soon.

This notebook has code built in to operate symbolically on native MTM reals, complexes, and quaternionic forms, as well as my custom code to handle the octonions, and now the bi-octonions (which doesn’t assign the octonion e1 to be equivalent to the complex imaginary (I)). That change also applies to the native quaternion assignments where of e1=I, e2=J, and e3=K in order to work with quater-octonions. This was a fairly trivial change to make since it simply involves removing the conversion of complex (and quaternion) operators from being involved in the octonionic multiplication.

Please note that my previous analysis here (from Feb. 2019) made the mistake of not commenting out these operations. As such, it was operating on octonions (not complexified bi-octonions), so some of my concerns were resolved based on correcting that error.

The bottom line is that I did validate much of the work presented in the referenced papers, with the exception of some 3 generation SM charge (Q) assignments in that latest paper (Oct. 2019).

I am very interested here in the suggestion at the very end of that paper [5] in the Addendum Section IX(B/C) on Multi-actions splitting spinor spaces, Lie algebras/groups, and Jordan algebras. I suspect having the ability to create a machine (i.e. a symbolic engine such as MTM) to operate on and visualize these structures as hyper-dimensional physical elements is critical to making progress in understanding our Universe more thoroughly.

While I have had some success in replicating quark color exchange, as well as flavor changes (e.g. green u2 to d3 quark exchange using g13), there doesn’t seem to be a complete description of how to construct each of those color and flavor exchange actions from the examples given. So for reference I present all possible combinations of these actions across the particle/anti-particle definitions (see the image linked in the last paragraph of this post). This comment about limited examples also applies to replicating the 3 generation charge (Q) calculation using the sS constructs mentioned above.

I welcome any help or advice or additional examples.

Below is an example image of the 3 generation SM from the 2019 paper built from bi-octonions (with my octonion multiplication table reductions applied. The anti-particles (not shown) are simply the complex-conjugate of these. While I show in string form of Q, I am not showing the commutations based evaluations for them due to the questions / issues I have on how to get it to work.

The image below shows more detail of the 3 generation SM from 2014 with my code implementing the reductions. This leaves off the charge (Q) which was not defined as above in 2014 (AFAIK).

The image below shows a simple construction of the 0-V to 6-V splitting of the Mf Clifford algebraic structures, which I generated using MTM Subsets:

The rather large (long) image here checks all SM particle color and flavor changing actions and includes the anti-particles. The output is extensive and given my open questions on the formalism presented, the accuracy likely deviates from the intent of [5], but it is interesting to show how everything transforms. If no transform is found for a particular action, it outputs an * for that action. If a color or flavor changing transformation action is found, it identifies that action with the list of particles to which the transformation applies. Note: it only identifies a transformed particle if the source particle has a non-zero reduced value and the resulting match is exact (red) or a +/- integer factor of that particle (blue).

Messier Marathon 2021

The idea is to observe the 110 astronomical Messier objects which are visible to some of the Northern Hemisphere in March/April. The best result is to do it all in one night, which is difficult unless everything works out seamlessly (110 over 11 dark hours leaves only 6 minutes per image, so it isn’t so much about quality but speed).

So I decided to try and set up my astro gear to automate the process of taking 110 Messier objects in one night. 

In testing it the evening of March 2, it was going really well so I decided to pull an unplanned all-night’er and got 100 of the 110 (with the missing 10 not being visible to my scope before sunrise due to the obstruction of my house, as well as it being a bit early in the Messier season). 

Click here for a video compilation of the shots I took (sorted by their Messier number each using a 2 minute monochrome exposure):

5-color graph solutions to the Hadwiger–Nelson problem

These are a simple animated visualizations I created while studying the problem. They contain a sequence of 2s frames starting at 130 vertices and incrementing 62. The red numbered text are the first few starting vertex numbers showing the hexagonal structure of the construction. On the left is a list of sorted and color coded vertices by the number of edges on a vertex for that frame’s shown vertices (it also lists in the right column the number of vertices with that number of edges & color). The solution data was obtained from: https://github.com/marijnheule/CNP-SAT

The 510 vertex / 2504 edge 5-color graph solution to the Hadwiger–Nelson problem
The 874 vertex / 4461 edge 5-color graph solution to the Hadwiger–Nelson problem

Here is a link to a Mathematica Notebook (50Mb) that has interactive ListAnimated graphs with vertex data (vertex number, symbolic and numeric coordinates, number of edges on the vertex in the frame) in Tooltip on mouseover.

3D Visualization of the rays of E6 & E7 in Kochen-specker theory by Ruuge & Waegell/Aravind

In several papers on BKS proofs, Arthur Ruuge’s “Exceptional and Non-Crystallograpic Root Systems and the Kochen-Specker Theorem” https://arxiv.org/abs/0906.2696v1 and Mordecai Waegell & P.K. Aravind’s “Parity proofs of the Kochen-Specker theorem based on the Lie algebra E8” https://arxiv.org/abs/1502.04350v2, in addition to E8, E6 and E7 is studied. Using the visualization developed for my recent paper and prior papers, I present here the related visualizations for E6 and E7 as discussed in those papers.

The 72 E6 vertices derived from E8 and projected to 3D using the “E8->H4” basis vectors. The 15*72=1080 edges are shown in the upper left, the 36 anti-podal rays are shown in the upper right along with the hull group vertex counts and norm distance. The bottom image shows the 4 hulls – yellow Icosahedron (12), cyan dodecahedron (20) and the orange/pink pentagonal prisms (40)).
The 126 E7 vertices derived from E8 and projected to 3D using the “E8->H4” basis vectors. The 16*126=2016 edges are shown in the upper left, the 63 anti-podal rays are shown in the upper right along with the hull group vertex counts and norm distance. The bottom image shows the 4 hulls – orange 2 overlapping Icosahedrons (24), pink2 overlapping dodecahedron (40), and cyan & gray icosidodecahedrons(60) with 2 vertices at the origin.

My Latest paper published on Vixra – 3D Polytope Hulls of E8 4_21, 2_41, and 1_42

https://vixra.org/pdf/2005.0200v1.pdf

or also available directly from this website:

https://theoryofeverything.org/TOE/JGM/3D_Polytope_Hulls_of_E8-421-241-142.pdf

Using rows 2 through 4 of a unimodular 8x8 rotation matrix, the vertices of E8 421, 241, and 142 are projected to 3D and then gathered & tallied into groups by the norm of their projected locations. The resulting Platonic and Archimedean solid 3D structures are then used to study E8’s relationship to other research areas, such as sphere packings in Grassmannian spaces, using E8 Eisenstein Theta Series in recent proofs for optimal 8D and 24D sphere packings, nested lattices, and quantum basis critical parity proofs of the Bell-Kochen-Specker (BKS) theorem.

A few new Figures from the paper.

FIG. 6: Pair of overlapping rhombicosidodecahedrons from
3rd largest hull of the 74 hulls in 142
FIG. 13: 421 & Polytope projected to various 3D spaces
Each 3D projection shown lists the projection name, the nu-
meric basis vectors used, and the 421 & 142 overlap color coded
vertex groups, and the projection with vertices (larger) &
6720 edges and the 142 vertices (smaller)
FIG. 14: Concentric hulls of 241 in Platonic 3D projection
with vertex count in each hull and increasing opacity and
varied surface colors.
a) 24 individual concentric hulls
b) In groups of 8 hulls
FIG. 15: Concentric hulls of 142 in Platonic 3D projection
with vertex count in each hull and increasing opacity and
varied surface colors.
a) 74 individual concentric hulls
b) In groups of 8 hulls
FIG. 18: E8’s outer two hulls scaled to unit norms in Platonic
3D projection with vertex counts color coded by overlaps
a) 54 vertex (42 unique) 421=241 icosidodecahedron (30 yel-
low) & two overlapping icosahedrons (12 red) scaled 1.051
b) 100 vertex (80 unique) 142 non-uniform rhombicosidodeca-
hedron (60 yellow) & two overlapping dodecahedrons (20 red)
scaled 1.0092
c) 154 vertex (122 unique) combination of a & b
d) 208 vertex (122 unique) combination same as c with color
coded vertex counts for both 421 & 241
Note: The internal numbers of the image are the 8 axis (pro-
jection basis vectors).

Now for a few new visualizations that are not in the paper…

Various 3D projections of 2_41
Various 3D projections of 4_21

3D visualization of E8 1_42 polytope

This is what I expect to be the first ever 3D visualization of the E8 1_42 polytope with 17280 vertices showing concentric hulls of Platonic solid related structures!

E8 1_42 polytope with 17280 vertices showing concentric hulls of Platonic solid related structures! Vertex colors represent the overlap counts.
Each of 74 concentric hulls based on 3D Norm’d vertex positions (with varying opacity in sets of 8). Vertex counts in each hull listed above.
9 sets of 8 concentric hulls plus the last 2 outer hulls, Vertex counts in each
of 8 hull listed above. Notice this is a combination of two overlapped dodecahedrons (40) and a Nonuniform Rhombicosidodecahedron (60).

For the sake of completeness in visualization, see below for various projections to 2D. Click these links for a higher resolution PNG or the SVG version.

Nested Lattices of E8 in Complex Projective 4-Space

I read an interesting article about a pattern discovered by Warren D. Smith (discussed at length here):

“The sum of the first three terms in the Eisenstein E_4(q)  Series Integers of the Theta series of the E8 lattice is a perfect fourth power: 1 + 240 + 2160 = 2401 = 7^4”

So I decided to visualize the 2401=1+240+2160 vertex patterns of E8 using my Mathematica codebased toolset based on some previous work I put on my Wikipedia talk page.

The image below represents various projections showing 6720 edges of the 240 E8 vertices, plus a black vertex at the origin, and the 2160 Witting Polytope E8 2 _ 41 vertices using the same projection basis (listed at the top of each image along with the color coded vertex overlaps). Click these links for a higher resolution PNG or the SVG version.

Some of the particular projections of the Witting Polytope may need 8D rotations applied to the basis vectors to find better symmetries with the Gosset, but this is a start using my standard set of projections.

The 240 vertices of the Gosset Polytope are generated using various permutations:

(* E8 4_21 vertices *)
e8421 = Union@Join[
Eperms8@{1, 1, 1, 1, 1, 1, 1, 1}/2,
perms8@{1, 1, 0, 0, 0, 0, 0, 0}];

The 2160 vertices of the Witting Polytope are generated using various permutations:

(* E8 2_41 vertices *)
e8241=Union@Join[
perms8[{1,0,0,0,0,0,0,0}4],
perms8[{1,1,1,1,0,0,0,0}2],
Eperms8[({2,0,0,0,0,0,0,0}+1)]]/4;

Another view shows just the 2160 Witting Polytope vertices. Click these links for a higher resolution PNG or the SVG version.

2160 Witting Polytope (vertices only)

Another great source of visualizations on E8 and this Witting Polytope is here.

Now visualizing in 3D the structure in 3D using rows 2-4 of the E8->H4 folding matrix, we get:

Witting Polytope with 2160 E8 2 _ 41 vertices sorted by Norm distance into 3D Platonic solid related concentric hull structures using rows 2-4 of the E8->H4 folding matrix. The last image shows overlap counts using colored vertices.
Sets of 8 concentric hulls with hull vertex counts above each.
Full set of concentric hulls with color coded vertices showing overlap counts. Norm’d vertex groups in red.

Visualizing the concentric hulls of E8 with the 24-cells of H4 & H4Φ

I’ve had a number of related posts on this topic, but I wanted to present a few new pictures and PDF documents that combine the 7 concentric hulls forming Platonic solid related sets of E8 vertices projected to 3D with vertices of five pairs of 24-cell objects.

These break down the E8 structure into familiar 3D objects, such as the icosahedron with its dual the dodecahedron, the icosidodecahdron, and the 16-cell with its dual the 8-cell (aka. Tesseract) combined to create the self-dual 24-cell.

The yellow spheres are those of the outer hull of singular 30 vertices of an icosidodecahedron. The orange spheres are pairs of icosahedron or dodecahedron vertices. The edges with numbered vertices form one of five 24-cells in the 120 vertex H4Φ scaled 600-cell within E8. Specifically, it is the 3rd rotation (of 4 π/5 rotations) within the 96 vertices of the snub-24-cell.

You can see that 6 of the yellow vertices connect to the 24-cell. Rotating that 24-cell four times in 3-space by π/5 gives the connections to the rest of the vertices in H4Φ and completes the 30 vertex icosidodecahedron . The same is true for the 120 vertices of H4 using the corresponding 24-cell in H4.
a) 24-cell highlighting the 16-cell (red on-axis vertices) and 8-cell (blue off-axis vertices)

b) Snub 24-cell highlighting four π/5 rotations of the 24-cell (black) in red, green, blue, yellow.

The following paper hulls-24cells-combined.pdf (13MB) & interactive Mathematica Notebook hulls-24cells-combined.nb (34MB) contains a comprehensive set of images that show the contents of the 7 concentric hulls of Platonic solid related shapes as well as their integration with one of the rotations of 24-cells in H4 and H4Φ in E8 (the same one used in the image above).

Snapshot from the paper showing the 3rd rotation of the snub 24-cell and the icosidodecahedron of H4Φ

In the E8 Petrie projection, every hull (each with 2 or 4 overlapping vertices) pair into left/right patterns. See the set of four icosahedrons that occupy the 3rd hull in both 2D and 3D (the yellow edge sets belongs to the H4Φ and the blue sets belong to H4) :

3rd hull Icosahedrons (4) in 2D Petrie Projection
3rd hull Icosahedrons (4) in 3D Petrie Projection

The pair of dodecahedrons that occupy the 5th hull in both 2D and 3D (the yellow edge set belongs to the H4Φ and the blue belong to H4) :

5th hull Dodecahedrons in 2D Petrie Projection
5th hull Dodecahedrons in 3D Petrie Projection (also showing the physics particle assignment)

Below is an animation that cycles through the sequence of 2D Petrie Projections of the pairs of hulls. One cycle shows each frame individually and the other builds the E8 Petrie from the previous 2D hull.

Below are images of the left (H4) and right (H4Φ) 2D Petrie projections of the hulls (which are defined by the Norm’s of 3D projected vertices using the E8->H4 folding matrix rows 2-4 as basis vectors). The two 30 vertex 4 & 7 Icosidodecahedron hulls and four 0th hull (points) are omitted leaving the gaps in the diagram. When these gap vertices are combined with the 48 3rd hull Icosahedrons (above), they make up the 112 integer D8 group assigned to the Bosons (48) and 2nd generation Fermions (64) in the physics model described below.

The combined set of hulls projected using the rows of the folding matrix as basis vectors is shown below from previous work:

Concentric hulls of Platonic solid related shapes along with their norm’d radii.

This paper hull-list-3b.pdf (4MB) & interactive Mathematica Notebook hull-list-3b.nb (20MB) contains the visualizations and detail E8 vertices associated with each Platonic solid related concentric hulls. This paper 24cell-list-3b.pdf (6MB) & interactive Mathematica Notebook 24cell-list-3b.nb (20MB) contains the visualizations and detail for the five 24-cells in each H4 & H4Φ. Both of these papers also have detail information about its assigned physics particle based on a modified A.G. Lisi model (shown below). This paper describes these particle assignment symmetries in more detail.

Latest Paper – Unimodular rotation of E8 to H4 600-cells

Please see my latest paper that describes some advances in understanding the E8 to H4 rotation matrix

https://theoryofeverything.org/TOE/JGM/Unimodular-Rotation-of-E8-to-H4.pdf

Abstract: We introduce a unimodular Determinant=1 8×8 rotation matrix to produce four 4 dimensional copies of H4 600-cells from the 240 vertices of the Split Real Even E8 Lie group. Unimodularity in the rotation matrix provides for the preservation of the 8 dimensional volume after rotation, which is useful in the application of the matrix in various fields, from theoretical particle physics to 3D visualization algorithm optimization.

Visualization of the Icosahedral points generated recursively…