Tag Archives: Physics

Another look at integrating the Pascal Triangle to Clifford Algebra, E8 Lie Algebra/Groups, Octonions and Particle Physics Standard Model

Pascal-g

Modified Lisi split real even E8 particle assignment quantum bit patterns:

Lisi_Particle_Assignments

Assigning a specific mass, length, time, and charge metrics based on new dimensional relationships and the Planck constant (which defines Higgs mass).

ToEsummary

The split real even E8 group used has been determined from this simple root matrix (which gives the Cartan matrix upon dot product with a transpose of itself):

DynkinE8Full.svg

This Dynkin diagram builds the Cartan matrix and determines the root/weight/height with corresponding Hasse diagrams.

E8Hasse

E8HassePoset.svg

More amplituhedron capability (projected hull surface area and volume)

Getting more capability built into ToE_Demonstration.nb where it can now calculate the scattering amplitude by calculating the volume of the projected hull of selected edges in the n-Simplex Amplituhedron (based on a theory by Nima Arkani-Hamed, with some Mathematica code from J. Bourjaily for the positroid diagram). Of course, there is still much work to get this wrapped up…

A few more pics of Positive Grassmannian Amplituhedrons…
amplituhedron-0b

amplituhedron-0c
This last diagram is obtained using the following amplituhedron0.m as input to the ToE_Demonstration.nb (when using fully licensed Mathematica) as shown below:
* This is an auto generated list from ToE_Demonstration.nb *)
new := {
artPrint=True;
scale=0.1;
cylR=0.018;
range=2.;
pt={-0.3, 0.0, 0.6};
favorite=1;
showAxes=False;
showEdges=True;
showPolySurfaces=True;
eColorPos=False;
dimTrim=5;
ds=6;
pListName=”First8″;
dsName=”nSimplex”;
p3D=” 3D”;
edgeVals={{Sqrt[11/2], 8}, {Sqrt[9/2 – Sqrt[2]], 4}, {Sqrt[9/2 + Sqrt[2]], 4}};
};new;

Positroid Diagrams:
amplituhedron-0a

Amplituhedron Visualizations!

Playing around trying to visualize the latest in the theoretical high energy particle physics (HEP/TH) determining how particle masses might be predicted from geometric principles (based on a theory by Nima Arkani-Hamed, with some Mathematica code from J. Bourjaily for the positroid diagram).

Positive Grassmannian Amplituhedrons
amplituhedron-1a

Compare this Mathematica(l) basis to the artistic representation by Andy Gilmore amplituhedron-1a

Positroid Diagrams:
amplituhedron-0a

Created a new 4D Stowe-Janet-Scerri Periodic Table

I’ve replaced the standard periodic table in the 7th “Chemistry Pane” of my E8 visualizer with a 2D/3D/4D Stowe-Janet-Scerri version of the Periodic Table.

Interestingly, it has 120 elements, which is the number of vertices in the 600 Cell or the positive half of the 240 E8 roots. It is integrated into VisibLie_E8 so clicking on an element adds that particular atomic number’s E8 group vertex number to the 3rd E8 visualizer pane.

The code is a revision and extension of Enrique Zeleny’s Wolfram Demonstration

A few screen shots….
PeriodicTable_3D

PeriodicTable_3Ds

PeriodicTable_2D

Stowe-Janet-Scerri 2D Periodic Table

ToE_Demonstration

ToE_Demonstration-new-stowe-i10

ToE_Demonstration-new-stowe-i10a

Stowe-Janet-Scerri 3D Periodic Table

2D and 3D electron orbitals for each element
eOrbitals2D

eOrbitals3D

eOrbitals3D-1

eOrbitals3D-2

eOrbitals3D-3

MyToE updated from 2013 Planck Spacecraft and 2012 LHC results

With the recent publication of results for the Planck spacecraft results and the recent LHC Higgs results for the discovery of a 125(+/-1.5)GeV Higgs boson, I thought I would publish the minor tweaks to my PDF ToE summary or see the Mathematica notebook here. Enjoy!

It is interesting to note that my original paper from ’98 (updated ’01) Constants-A_New_Look.pdf contains this new Planck CMB probe result for a Hubble constant of H0=67.133 km/s/Mpc, which is at odds with WMAP, COBE, and prior estimates.

This old paper has a Higgs mH=98.137 GeV, which is around the minima of the ChiSquared value for Higgs. This was quickly excluded by FermiLab results around that time. The basic Higgs prediction relies purely on the dimensionality of the model and the Planck constant. Adding a factor of 2^1/2 gave an aesthetically pleasing mH=147.98 in a ’07 paper here. This was close to a June ’11 FermiLab CDF bump at 148 GeV. Unfortunately D0 at FermiLab didn’t confirm it.

Interestingly between the ’01 and the ’07 papers, one of the Higgs mass models I used 2^1/4 (not 2^1/2) and puts mH=124.43 GeV – right where LHC ATLAS and CMS seem to have found it. This same model also (fairly) accurately integrates this to the Fermi Constant and vacuum expecation (VEV).

The bottom line, my model describes results that are within the most current and accurate experimentally measured data, including the LHC Higgs and Planck CMB probes.

ToE Summary

ToEsummary

The 480 octonions, their Fano planes and multiplication tables

I am pleased to announce the availability of Fano.pdf, a 241 page pdf file with the 480 octonion permutations (with Fano planes and multiplication tables). These are organized into “flipped” and “non-flipped” pairs associated with the 240 assigned particles to E8 vertices (sorted by Fano plane index or fPi). For each split real even E8 vertex, the algebra root, weight and height are listed along with the Clifford/Pascal binary and physics rotation coordinates. On each page, the E8 particle number, symbol, and assigned 2D/3D shape are shown along with the (a)nti, (p)Type, (s)pin, (c)olor, (g)eneration bitwise quantum assignments. Also included is the particle experimental mass and lifetime along with my ToE theoretically calculated mass. (30MB)

I believe this is the only comprehensive presentation of all 480 Fano planes with their multiplication tables available.