The Isomorphism of H4 and E8

Click here for a PDF of my recent paper. This has been accepted by the arXiv as 2311.01486 (math.GR & hep-th) with an ancillary Mathematica Notebook here. These links have (and will continue to have) minor descriptive improvements/corrections that may not yet be incorporated into arXiv, so the interested reader should check back here for those. Another related follow-on paper on THE ISOMORPHISM OF 3-QUBIT HADAMARDS AND E8 is referenced in the blog post here.

The abstract: This paper gives an explicit isomorphic mapping from the 240 real R^8 roots of the E8 Gossett 4_{21} 8-polytope to two golden ratio scaled copies of the 120 root H4 600-cell quaternion 4-polytope using a traceless 8×8 rotation matrix U with palindromic characteristic polynomial coefficients and a unitary form e^{iU}. It also shows the inverse map from a single H4 600-cell to E8 using a 4D<->8D chiral L<->R mapping function, phi scaling, and U^{-1}. This approach shows that there are actually four copies of each 600-cell living within E8 in the form of chiral H4L+phi H4L+H4R+phi H4R roots. In addition, it demonstrates a quaternion Weyl orbit construction of H4-based 4-polytopes that provides an explicit mapping between E8 and four copies of the tri-rectified Coxeter-Dynkin diagram of H4, namely the 120-cell of order 600. Taking advantage of this property promises to open the door to as yet unexplored E8-based Grand Unified Theories or GUTs.

Concentric hulls of4_21 in Platonic 3D projection with numeric and symbolic norm distances
2D to the E8 Petrie projection using basis vectors X and Y from (6) with 8-polytope radius 4\sqrt{2} and 483,840 edges of length \sqrt{2} (with 53% of inner edges culled for display clarity
An alternative set of structure constant triads, octonion Fano plane mnemonic, and multiplication table, with decorations showing the palindromic multiplication.
1_42 projections of its 17,280 vertices
Visualization of the 144 root vertices of S’+T+T’ now identified as the dual snub 24-cell
Breakdown of E8 maximal embeddings at height 248 of content SO(16)=D8 (120,128′)
Archimedean and dual Catalan solids, including their irregular and chiral forms. These were created using quaternion Weyl orbits directly from the A3, B3, and H3 group symmetries listed in the first column
A3 in A4 embeddings of SU(5)=SU(4)xU1
These include the specified 3D quaternion Weyl orbit hulls for each subgroup identified
The Eigenvalues, Eigenvector matrix, and characteristic polynomial coefficients of the unitary form of U as e^{IU} showing a Tr@Re@e^{IU}~4 and a traceless imaginary part

Leave a Reply