Tag Archives: E8

Visualizing the Quaternion Generated Dual to the Snub 24 Cell

I did a Mathematica (MTM) analysis of several important papers here and here from Mehmet Koca, et. al. The resulting MTM output in PDF format is here and the .NB notebook is here.

3D Visualization of the outer hull of the 144 vertex Dual Snub 24 Cell, with vertices colored by overlap count:
* The (42) yellow have no overlaps.
* The (51) orange have 2 overlaps.
* The (18) tetrahedral hull surfaces are uniquely colored.

What is really interesting about this is the method to generate these 3D and 4D structures is based on Quaternions (and Octonions with judicious selection of the first triad={123}). This includes both the 600 Cell and the 120 Cell and its group theoretic orbits. The 144 vertex Dual Snub 24 Cell is a combination of those 120 Cell orbits, namely T'(24) & S’ (96), along with the D4 24 Cell T(24).

3D Visualization of the outer hull of the alternate 96 vertex Snub 24 Cell (S’)
Visualization of the concentric hulls of the Alternate Snub 24 Cell
Visualization of the outer hull of the 192 vertex M as a part of the 120 Cell
Various 2D Coxeter Plane Projections with vertex overlap color coding.

Cloud Based VisibLie_E8 Demonstration

The cloud deployments don’t have all the needed features as the fully licensed Mathematica notebooks, so I included a few of the panes that seem to work for the most part. Some 3D and animation features won’t work, but it is a start. Bear in mind that the response time is slow.

Link to the demonstration.

A Theory of Everything Visualizer, with links to free Cloud based Interactive Demonstrations:

1) Math: Chaos/Fibr/Fractal/Surface: Navier Stokes/Hopf/MandelBulb/Klein

2) Math: Number Theory: Mod 2-9 Pascal and Sierpinski Triangle

3) Math: Geometric Calculus: Octonion Fano Plane-Cubic Visualize

4) Math: Group Theory: Dynkin Diagram Algebra Create

5) Math: Representation Theory: E8 Lie Algebra Subgroups Visualize

6) Physics: Quantum Elements: Fundamental Quantum Element Select

7) Physics: Particle Theory: CKM(q)-PMNS(ν) Mixing_CPT Unitarity

8) Physics: Hadronic Elements: Composite Quark-Gluon Select Decays

9) Physics: Relativistic Cosmology: N-Body Bohmian GR-QM Simulation

10) Chemistry: Atomic Elements: 4D Periodic Table Element Select

11) Chemistry: Molecular Crystallography: 4D Molecule Visualization Select

12) Biology: Genetic Crystallography: 4D Protein/DNA/RNA E8-H4 Folding

13) Biology: Human Neurology: OrchOR Quantum Consciousness

14) Psychology: Music Theory & Cognition: Chords, Lambdoma, CA MIDI,& Tori

15) Sociology: Theological Number Theory: Ancient Sacred Text Gematria

16) CompSci: Quantum Computing: Poincare-Bloch Sphere/Qubit Fourier

17) CompSci: Artificial Intelligence: 3D Conway’s Game Of Life

18) CompSci: Human/Machine Interfaces: nD Human Machine Interface

My VisbLie E8 demonstration system for Mathematica v13

The newer version of the VisibLieE8-NewDemo-v13.nb (130 Mb) will work with those who have a full Mathematica v13 license. It is backward compatible to earlier versions. There are a few bug fixes from the older version of ToE_Demonstration.nb (130 Mb), which should work on v13 and older versions as well.

For more detail on the modules, see this blog post.

Please be patient, it is very large and can take 10 minutes to load, depending on your Internet connection, memory and CPU speed.

The free Wolfram CDF Player v. 13 works with my VisibLie E8 ToE demonstration on Win10

In case you’re interested, I just verified the demo works on the free Mathematica CDF player v.13 for Win10.

Just go to https://www.wolfram.com/player/ install, download and open the app:


There is a ton of other cool interactive stuff in there. FYI – Some features don’t work without a full Mathematica license.


12-fold Symmetric Quasicrystallography from affine E6, B6, and F4

This post is an analysis of a June 2013 paper by Mehmet Koca, Nazife Koca, and Ramazan Koc. That paper contains various well-known Coxeter plane projections of hyper-dimensional polytopes as well as a new direct point distribution of the quasicrystallographic weight lattice for E6 (their Figure 3), as well as the quasicrystal lattices of B6 and F4.

Koca / Koc Figure 3 E6 Quasicrystallographic Weight Lattice

Wha‍t is interesting about this projection is that it precisely matches the point distribution (to within a small number of vertices) from a rectified E8 projection using a set of basis vectors I discovered in December of 2009, published in Wikipedia (WP) in February of 2010 here.

Rectified E8 in my “Triality” projection basis:
x=(2-4/√3   ,   0         ,   1-1/√3   ,      1-1/√3   ,   0   ,   -1   ,   1   ,   0   )
y=(   0   ,   -2+4/√3   ,   -1+1/√3   ,   1-1/√3   ,   0   ,   1/√3   ,   1/√3   ,   -2/√3   )

Rectification of E8 is a process of replacing the 240 vertices of E8 with points that represent the midpoint of each of the 6720 edges. In this projection, there are overlaps which are indicated by different colors in the color-coded WP image linked above.

The image below is an overlay of the above images highlighting the 12*(9+3+26+7)=540 points that are not overlapping:

Annotated overlap comparison showing missing 432 overlaps.

It is interesting to note that with a 30° rotation of my projection, the missing overlaps are reduced to 12*(15+2)=204.

Annotated overlap comparison showing missing 204 overlaps.

Given the paper’s explanation for the methods using E6 (720) with 6480 edges as a projection through a 4D 3-sphere window defined by q1 and q6, it may be insightful to study my projection basis for E8’s triality relationships with the Koca/Koc paper’s defined 4D 3-sphere.

For more information on why my projection basis is called the E8 Triality projection, see this post.

My Latest paper published on Vixra – 3D Polytope Hulls of E8 4_21, 2_41, and 1_42


or also available directly from this website:


Using rows 2 through 4 of a unimodular 8x8 rotation matrix, the vertices of E8 421, 241, and 142 are projected to 3D and then gathered & tallied into groups by the norm of their projected locations. The resulting Platonic and Archimedean solid 3D structures are then used to study E8’s relationship to other research areas, such as sphere packings in Grassmannian spaces, using E8 Eisenstein Theta Series in recent proofs for optimal 8D and 24D sphere packings, nested lattices, and quantum basis critical parity proofs of the Bell-Kochen-Specker (BKS) theorem.

A few new Figures from the paper.

FIG. 6: Pair of overlapping rhombicosidodecahedrons from
3rd largest hull of the 74 hulls in 142
FIG. 13: 421 & Polytope projected to various 3D spaces
Each 3D projection shown lists the projection name, the nu-
meric basis vectors used, and the 421 & 142 overlap color coded
vertex groups, and the projection with vertices (larger) &
6720 edges and the 142 vertices (smaller)
FIG. 14: Concentric hulls of 241 in Platonic 3D projection
with vertex count in each hull and increasing opacity and
varied surface colors.
a) 24 individual concentric hulls
b) In groups of 8 hulls
FIG. 15: Concentric hulls of 142 in Platonic 3D projection
with vertex count in each hull and increasing opacity and
varied surface colors.
a) 74 individual concentric hulls
b) In groups of 8 hulls
FIG. 18: E8’s outer two hulls scaled to unit norms in Platonic
3D projection with vertex counts color coded by overlaps
a) 54 vertex (42 unique) 421=241 icosidodecahedron (30 yel-
low) & two overlapping icosahedrons (12 red) scaled 1.051
b) 100 vertex (80 unique) 142 non-uniform rhombicosidodeca-
hedron (60 yellow) & two overlapping dodecahedrons (20 red)
scaled 1.0092
c) 154 vertex (122 unique) combination of a & b
d) 208 vertex (122 unique) combination same as c with color
coded vertex counts for both 421 & 241
Note: The internal numbers of the image are the 8 axis (pro-
jection basis vectors).

Now for a few new visualizations that are not in the paper…

Various 3D projections of 2_41
Various 3D projections of 4_21

3D visualization of E8 1_42 polytope

This is what I expect to be the first ever 3D visualization of the E8 1_42 polytope with 17280 vertices showing concentric hulls of Platonic solid related structures!

E8 1_42 polytope with 17280 vertices showing concentric hulls of Platonic solid related structures! Vertex colors represent the overlap counts.
Each of 74 concentric hulls based on 3D Norm’d vertex positions (with varying opacity in sets of 8). Vertex counts in each hull listed above.
9 sets of 8 concentric hulls plus the last 2 outer hulls, Vertex counts in each
of 8 hull listed above. Notice this is a combination of two overlapped dodecahedrons (40) and a Nonuniform Rhombicosidodecahedron (60).

For the sake of completeness in visualization, see below for various projections to 2D. Click these links for a higher resolution PNG or the SVG version.

Nested Lattices of E8 in Complex Projective 4-Space

I read an interesting article about a pattern discovered by Warren D. Smith (discussed at length here):

“The sum of the first three terms in the Eisenstein E_4(q)  Series Integers of the Theta series of the E8 lattice is a perfect fourth power: 1 + 240 + 2160 = 2401 = 7^4”

So I decided to visualize the 2401=1+240+2160 vertex patterns of E8 using my Mathematica codebased toolset based on some previous work I put on my Wikipedia talk page.

The image below represents various projections showing 6720 edges of the 240 E8 vertices, plus a black vertex at the origin, and the 2160 Witting Polytope E8 2 _ 41 vertices using the same projection basis (listed at the top of each image along with the color coded vertex overlaps). Click these links for a higher resolution PNG or the SVG version.

Some of the particular projections of the Witting Polytope may need 8D rotations applied to the basis vectors to find better symmetries with the Gosset, but this is a start using my standard set of projections.

The 240 vertices of the Gosset Polytope are generated using various permutations:

(* E8 4_21 vertices *)
e8421 = Union@Join[
Eperms8@{1, 1, 1, 1, 1, 1, 1, 1}/2,
perms8@{1, 1, 0, 0, 0, 0, 0, 0}];

The 2160 vertices of the Witting Polytope are generated using various permutations:

(* E8 2_41 vertices *)

Another view shows just the 2160 Witting Polytope vertices. Click these links for a higher resolution PNG or the SVG version.

2160 Witting Polytope (vertices only)

Another great source of visualizations on E8 and this Witting Polytope is here.

Now visualizing in 3D the structure in 3D using rows 2-4 of the E8->H4 folding matrix, we get:

Witting Polytope with 2160 E8 2 _ 41 vertices sorted by Norm distance into 3D Platonic solid related concentric hull structures using rows 2-4 of the E8->H4 folding matrix. The last image shows overlap counts using colored vertices.
Sets of 8 concentric hulls with hull vertex counts above each.
Full set of concentric hulls with color coded vertices showing overlap counts. Norm’d vertex groups in red.

Visualizing the concentric hulls of E8 with the 24-cells of H4 & H4Φ

I’ve had a number of related posts on this topic, but I wanted to present a few new pictures and PDF documents that combine the 7 concentric hulls forming Platonic solid related sets of E8 vertices projected to 3D with vertices of five pairs of 24-cell objects.

These break down the E8 structure into familiar 3D objects, such as the icosahedron with its dual the dodecahedron, the icosidodecahdron, and the 16-cell with its dual the 8-cell (aka. Tesseract) combined to create the self-dual 24-cell.

The yellow spheres are those of the outer hull of singular 30 vertices of an icosidodecahedron. The orange spheres are pairs of icosahedron or dodecahedron vertices. The edges with numbered vertices form one of five 24-cells in the 120 vertex H4Φ scaled 600-cell within E8. Specifically, it is the 3rd rotation (of 4 π/5 rotations) within the 96 vertices of the snub-24-cell.

You can see that 6 of the yellow vertices connect to the 24-cell. Rotating that 24-cell four times in 3-space by π/5 gives the connections to the rest of the vertices in H4Φ and completes the 30 vertex icosidodecahedron . The same is true for the 120 vertices of H4 using the corresponding 24-cell in H4.
a) 24-cell highlighting the 16-cell (red on-axis vertices) and 8-cell (blue off-axis vertices)

b) Snub 24-cell highlighting four π/5 rotations of the 24-cell (black) in red, green, blue, yellow.

The following paper hulls-24cells-combined.pdf (13MB) & interactive Mathematica Notebook hulls-24cells-combined.nb (34MB) contains a comprehensive set of images that show the contents of the 7 concentric hulls of Platonic solid related shapes as well as their integration with one of the rotations of 24-cells in H4 and H4Φ in E8 (the same one used in the image above).

Snapshot from the paper showing the 3rd rotation of the snub 24-cell and the icosidodecahedron of H4Φ

In the E8 Petrie projection, every hull (each with 2 or 4 overlapping vertices) pair into left/right patterns. See the set of four icosahedrons that occupy the 3rd hull in both 2D and 3D (the yellow edge sets belongs to the H4Φ and the blue sets belong to H4) :

3rd hull Icosahedrons (4) in 2D Petrie Projection
3rd hull Icosahedrons (4) in 3D Petrie Projection

The pair of dodecahedrons that occupy the 5th hull in both 2D and 3D (the yellow edge set belongs to the H4Φ and the blue belong to H4) :

5th hull Dodecahedrons in 2D Petrie Projection
5th hull Dodecahedrons in 3D Petrie Projection (also showing the physics particle assignment)

Below is an animation that cycles through the sequence of 2D Petrie Projections of the pairs of hulls. One cycle shows each frame individually and the other builds the E8 Petrie from the previous 2D hull.

Below are images of the left (H4) and right (H4Φ) 2D Petrie projections of the hulls (which are defined by the Norm’s of 3D projected vertices using the E8->H4 folding matrix rows 2-4 as basis vectors). The two 30 vertex 4 & 7 Icosidodecahedron hulls and four 0th hull (points) are omitted leaving the gaps in the diagram. When these gap vertices are combined with the 48 3rd hull Icosahedrons (above), they make up the 112 integer D8 group assigned to the Bosons (48) and 2nd generation Fermions (64) in the physics model described below.

The combined set of hulls projected using the rows of the folding matrix as basis vectors is shown below from previous work:

Concentric hulls of Platonic solid related shapes along with their norm’d radii.

This paper hull-list-3b.pdf (4MB) & interactive Mathematica Notebook hull-list-3b.nb (20MB) contains the visualizations and detail E8 vertices associated with each Platonic solid related concentric hulls. This paper 24cell-list-3b.pdf (6MB) & interactive Mathematica Notebook 24cell-list-3b.nb (20MB) contains the visualizations and detail for the five 24-cells in each H4 & H4Φ. Both of these papers also have detail information about its assigned physics particle based on a modified A.G. Lisi model (shown below). This paper describes these particle assignment symmetries in more detail.