Tag Archives: E8

The H4 600-Cell in all its beauty

These models use a tetrahedral mesh generator package << TetGenLink` to analyze the cells created by the edges selected.

Note: The Mathematica auto-generated geometry statistics of 120 vertices, 720 golden-ratio length edges, 1200 faces, and 600 color-coded cells, with a surface area of 11.4 volume of 127.

The transparent shaded blue is the outer hull that forms the Pentakis Icosidodecahedron with a vertex hull having 30 vertices of Norm=1 from the center. All 120 vertices form concentric hulls in groups:

1) two points at the origin
2) two icosahedra (24)
3) two dodecahedra (40)
4) two larger icosahedra (24)
5) one icosidodecahedron (30)

H4 600-Cell with 3D vertex shapes representing Standard Model physics particle assignments and color-coded cells

H4 600-Cell with 1200 unit length edges, 2400 faces and 600-cells. 3D vertex shapes representing Standard Model physics particle assignments and color-coded cells are also shown

The H4 120-cell (J), dual of the 600-cell, showing the hull of the chamfered dodecahedron. It is also called a truncated rhombic triacontahedron, constructed as a truncation of the rhombic triacontahedron. It can more accurately be called an order-5 truncated rhombic triacontahedron because only the order-5 vertices are truncated. It is shown with physics particle assignments.

Same as above with interior color-coded cells displayed

3D Visualization of the outer hull of the Dual 120-Cell (600) J’ generated using T

The Dual H4 120-cell (J’) shown above (and more below).

An animated alternate form 120-cell (J’), which seems to be a new (near-miss Johnson solid?) constructed using D4′ (or T’) vs. D4 (T) above.

The H4 dual 120-cell (J’) build of outer edges and color-coded cells

The H4 dual 120-cell (J’) build of outer edges with physics particle assignments

There is yet another construction of a 120-cell that has the same outer hull as the 600-Cell (above), yet with the 600 vertices (5 on each of the 120 vertices of the 600-Cell. The exception to this is a set of 6 square faces.

The Isomorphism of 3-Qubit Hadamards and E8

Click here for a PDF of my latest paper. This has been accepted by the arXiv as 2311.11918 (math.GR & hep-th) with an ancillary Mathematica Notebook here. These links have (and will continue to have) minor descriptive improvements/corrections that may not yet be incorporated into arXiv, so the interested reader should check back here for those. The prior related paper on THE ISOMORPHISM OF H4 AND E8 is referenced in the blog post here.

Abstract: This paper presents several notable properties of the matrix U shown to be related to the isomorphism between H4 and E8. The most significant of these properties is that U.U is to rank 8 matrices what the golden ratio is to numbers. That is to say, the difference between it and its inverse is the identity element, albeit with a twist. Specifically, U.U-(U.U)-1 is the reverse identity matrix or standard involutory permutation matrix of rank 8. It has the same palindromic characteristic polynomial coefficients as the normalized 3-qubit Hadamard matrix with 8-bit binary basis states, which is known to be isomorphic to E8 through its (8,4) Hamming code.

The Isomorphism of H4 and E8

Click here for a PDF of my recent paper. This has been accepted by the arXiv as 2311.01486 (math.GR & hep-th) with an ancillary Mathematica Notebook here. These links have (and will continue to have) minor descriptive improvements/corrections that may not yet be incorporated into arXiv, so the interested reader should check back here for those. Another related follow-on paper on THE ISOMORPHISM OF 3-QUBIT HADAMARDS AND E8 is referenced in the blog post here.

The abstract: This paper gives an explicit isomorphic mapping from the 240 real R^8 roots of the E8 Gossett 4_{21} 8-polytope to two golden ratio scaled copies of the 120 root H4 600-cell quaternion 4-polytope using a traceless 8×8 rotation matrix U with palindromic characteristic polynomial coefficients and a unitary form e^{iU}. It also shows the inverse map from a single H4 600-cell to E8 using a 4D<->8D chiral L<->R mapping function, phi scaling, and U^{-1}. This approach shows that there are actually four copies of each 600-cell living within E8 in the form of chiral H4L+phi H4L+H4R+phi H4R roots. In addition, it demonstrates a quaternion Weyl orbit construction of H4-based 4-polytopes that provides an explicit mapping between E8 and four copies of the tri-rectified Coxeter-Dynkin diagram of H4, namely the 120-cell of order 600. Taking advantage of this property promises to open the door to as yet unexplored E8-based Grand Unified Theories or GUTs.

Concentric hulls of4_21 in Platonic 3D projection with numeric and symbolic norm distances
2D to the E8 Petrie projection using basis vectors X and Y from (6) with 8-polytope radius 4\sqrt{2} and 483,840 edges of length \sqrt{2} (with 53% of inner edges culled for display clarity
An alternative set of structure constant triads, octonion Fano plane mnemonic, and multiplication table, with decorations showing the palindromic multiplication.
1_42 projections of its 17,280 vertices
Visualization of the 144 root vertices of S’+T+T’ now identified as the dual snub 24-cell
Breakdown of E8 maximal embeddings at height 248 of content SO(16)=D8 (120,128′)
Archimedean and dual Catalan solids, including their irregular and chiral forms. These were created using quaternion Weyl orbits directly from the A3, B3, and H3 group symmetries listed in the first column
A3 in A4 embeddings of SU(5)=SU(4)xU1
These include the specified 3D quaternion Weyl orbit hulls for each subgroup identified
The Eigenvalues, Eigenvector matrix, and characteristic polynomial coefficients of the unitary form of U as e^{IU} showing a Tr@Re@e^{IU}~4 and a traceless imaginary part

Info about my creative work: The Universe, Math, Physics, & Art

I think the most well-known (2D) image I’ve created so far (above) is found on Wikipedia’s (WP) math/geometry pages. It is what has been called the Public Relations (PR) or publicity photo for E8, which is an 8D (or 248 dimensional as the math guys count it) geometric object. It has been used in books, papers, math/science conference promotional materials, etc. That WP page also has what many used to consider “uninteresting” – my 3D versions of the same object. E8 is used in various theories to understand how the Universe operates way below the atomic level (i.e. the quantum stuff). I think it is responsible for what I call the shape of the Universe. As others have said, “who knew the Universe had a shape?”

In (very) layman’s terms, that 2D image of E8 looks sort-of-like how the lowly 4D Tesseract cube would look if it grew up into an 8D object, but a bit more interesting. The Tesseract was made (more) popular in the modern Avengers movies. In 2015 before I had ever seen any of those movies, I created a laser etched 3D projection of E8 within a jewel cut optical crystal cube and put a photo of that object lit from below by a blue LED on my website’s main homepage. Someone mentioned the resemblance and I was surprised at the likeness, motivating me to go see the movies.

Another of my more notable math/physics images has to do with the discovery of QuasiCrystals made by a guy, Dan Shechtman, who was ostracized from academia for the “impossible” idea of crystals having rotational symmetries beyond 2,3,4 and 6. He is now a Nobel Laureate. The WP image above is on that QuasiCrystal page as an overlay of part of E8 projected over a picture made from shooting a beam of x-rays at an icosahedral Ho-Mg-Zn quasicrystal.  I didn’t actually do that experiment with the x-ray beams, but I did similar ones in my college days on a particle accelerator called the Cockroft-Walton Kevatron – see below for a picture of me (the one with the beard ;–)  in the physics lab assembling a moon dust experiment. One of the professors had gotten the accelerator out of Germany after having worked on the Manhattan project.

E8 and its 4D children, the 600-cell and 120-cell (pages on which I have some work, amongst others) and its grandkids (2 of the 3D 5 Platonic Solids, one of which is the 3D version of the 2D Pentagon) are all related to the Fibonacci numbers and the Golden Ratio. So that kind of explains why most of my 2D art, 3D objects and sculptures (e.g. furniture like the dodecahedron table below), and 4D youtube animations all use the Golden Ratio theme.

Greg Moxness, Tucson AZ

A4 Group Orbits & Their Polytope Hulls Using Quaternions

Updated: 05/11/2023

This post is a Mathematica evaluation of A4 Group Orbits & Their Polytope Hulls Using Quaternions and nD Weyl Orbits. This is a work-in-process, but the current results are encouraging for evaluating ToE’s.

Please see the this PDF or this Mathematica Notebook (.nb) for the details.

The paper being referenced in this analysis is here.

Of course, as in most cases, this capability has been incorporated into the VisibLie_E8 Demonstration codebase. See below for example screen shots:

Hasse Visualization
Maximal Embeddings

This is an example .svg file output from the same interactive demonstration:

SVG file output from the VisibLie_E8 Coxeter-Dynkin Interactive Demonstration Pane showing the OmniTruncated A4 Group Vertex Hulls

More code and output images below: