Tag Archives: Boerdijk-Coxeter

Fun with Tutte-Coxeter, Beordijk-Coxeter, E8 and H4

In reference to a G+ post by Baez (w/Greg Egan), it’s interesting to note the link to E8’s outer ring of the Petrie projection of a split real even E8, which creates a Beordijk-Coxeter helix.

Beordijk-Coxeter helix in 2D
helix2Db
Beordijk-Coxeter helix in 3D
cells6004b

The Beordijk-Coxeter helix connects the nearest 6 vertices on the outer ring. The Tutte-Coxeter graph is created in 3 (blk,grn,red) sets of edges by taking the (outer) ring and skipping (6,8,12) or counting (7,9,13) vertices. It shows there are 2 perfect pentagons and 1 pentagram (with different radii due to the difference in distance between the sets of vertices used).

e8ring8-1b

Of course, the crystallographic E8 is manifestly related to the 5 fold symmetry of the pentagon, with its integral relationship to the non-crystallographic H4 group (and its Coxeter-Dynkin diagram) through E8 to H4 folding using the Golden ratio Phi.

It is interesting to note that the skipping of 5+(1,3,7) vertices is similar to the creation of the 120 (240) vertex positions of H4 (E8) Petrie projection by adding to the 24 vertices of the 8-cell and 16-cell (which make up the self-dual 24-cell) the 96 vertices of the Snub 24-cell. This is done through 4 rotations skipping 5 vertices.

Also notice the (1,3,7) are the number of the imaginary parts of Complex, Quaternion, and Octonion numbers, also integrally related to E8.

snub-pics

E8, H4, Quasi-Crystals, Penrose Tiling, Boerdijk-Coxeter Helices and an AMS blog post on the topic

This pic is an overlay of an image from Greg Egan on the AMS blog VisualInsight on top of one I created several years ago for the quasicrystal wikipedia page.

It uses my E8-H4 folding matrix to project E8 vertices to several interesting objects. The 5 dimensional 5-cube (Penteract) and the related 3D the Rhombic-Triacontahedron, as well as this 2D overlay on the Ho-Mg-Zn electron diffraction pattern.

Ho-Mg-Zn_E8-5Cube-baez-egan-overlay

E8 vertices projected to 2D pentagonal projection
E8-5Cube

5-cube in 3D
5-cube-2

6-cube edges projected to the Rhombic-Triacontahedron using 3 of 4 rows of my E8-H4 folding matrix.
6Cube-QuasiCrystal-low

Rhombic-Triacontahedron with inner edges removed
RhombicTricontahedron

The Boerdijk-Coxeter helix is also related to these structures through the Golden Ratio.

Edges on the outer ring of the E8 Petrie projection related to Boerdijk-Coxeter helix.
helix2Db

Same as above in 3D with the tetrahedral cell faces and 3D vertex shape-color-size based on quantum particle parameters from a theoretical physics model.
cells6004b

Same as above also showing the inner E8 ring Boerdijk-Coxeter helix.
inner-outerP
Platonic solids
E8-3D-Platonic-2

Analyzing individual Fermi 4 particle "cell interactions" in 3D on Boerdijk–Coxeter helix rings

cell-interaction

inner-outerP

The Boerdijk–Coxeter helix is a 4D helix (of 3D tetrahedral cells) that makes up the vertices on 4 of the concentric rings of E8 Petrie projection (or the H4 and H4φ rings of the 2 600 cells in E8).

Outer (Ring 4) of H4 in 2D with non-physics vertices of all 8 rings of E8 in the background

helix2Db

Outer (Ring 4) of H4 in 3D with physics vertices

cells6004b

Ring 3 of H4 in 3D with physics vertices

cells6003b

Ring 2 of H4 in 3D with physics vertices

cells6002b

Inner (Ring 1) of H4φ in 3D with physics vertices

cells6001a

Combined 4 rings of H4 in 3D with physics vertices

cells6001234-small

Outer (Ring 4) of H4φ in 3D with physics vertices
cells6004phib

Ring 3 of H4φ in 3D with physics vertices

cells6003phib

Ring 2 of H4φ in 3D with physics vertices

cells6002phib

Inner (Ring 1) of H4φ in 3D with physics vertices

cells6001phib

Combined 4 rings of H4φ in 3D with physics vertices

cells6001234phi-small

Combined 8 rings in 3D with physics vertices

cells6001234-phi-small

Boerdijk–Coxeter helix

The Boerdijk–Coxeter helix is a 4D helix (of 3D tetrahedral cells) that makes up the vertices on 4 of the concentric rings of E8 Petrie projection (or the H4 and H4φ rings of the 2 600 cells in E8).

Outer (Ring 4) of H4 in 2D with non-physics vertices of all 8 rings of E8 in the background

helix2Db

inner-outerP

Outer (Ring 4) of H4 in 3D with physics vertices

cells6004b

Ring 3 of H4 in 3D with physics vertices

cells6003b

Ring 2 of H4 in 3D with physics vertices

cells6002b

Inner (Ring 1) of H4φ in 3D with physics vertices

cells6001a

Combined 4 rings of H4 in 3D with physics vertices

cells6001234-small

Outer (Ring 4) of H4φ in 3D with physics vertices
cells6004phib

Ring 3 of H4φ in 3D with physics vertices

cells6003phib

Ring 2 of H4φ in 3D with physics vertices

cells6002phib

Inner (Ring 1) of H4φ in 3D with physics vertices

cells6001phib

Combined 4 rings of H4φ in 3D with physics vertices

cells6001234phi-small

Combined 8 rings in 3D with physics vertices

cells6001234-phi-small