All posts by jgmoxness

Zeleny's Hadron Decay Wolfram Demonstration added

This weekend I integrated a fantastic demonstration by Zeleny which allows the visualization of the composite Quark particle decays. I’ve integrated it into the sixth (Hadron) pane which starts with Blinder’s demonstration to visualize the composite Quark-Gluon particles. These demonstrations are extended by allowing the selection of 2 Quark Mesons, 3 Quark Baryons and recently discovered 4 and 6 Quark Hadrons and also drives content of the E8 sub group projection pane (#3). I also added a query to show all experimentally discovered composite Meson/Baryon particles with the same quark content and added a decay mode button when decays are in Wolfram’s ParticleData Group curated data set.

decays

hadrons

New TheoryOfEverything Visualizer Features

I cleaned up some of the N-Body physics screens, and created a few animation sequences showing the simulation runs available (if you have Mathematica and source code (available upon request and appropriate use-case)).

This is a video of a preliminary Galaxy formation in N-Body gravitational physics.

This is a video of the solar system (not yet using the OpenCL N-Body code for GPU parallelism).

This is a video of the Compton Effect in 3D, which I plan on using to show how Big Bang Inflationary Quantum effects are explained.

outNBodyPhys

outNBodyPhoton

I’ve also improved the capabilities of the other demonstrations.

outHadron

I've added an N-Body Gravitational Simulation Pane and enhanced the Composite Quark Hadron Model Pane

The N-Body Gravitational Simulation (not yet complete) uses Mathematica’s OpenCL GPU computing capability to simulate standard (Solar System), GR (Black Hole Centered Galaxy formation), Large Scale Universal Structure, and Quantum GR (Big Bang Inflationary) physics.

I’ve consolidated the Meson/Baryon panes into a single Hadron pane that now includes the formation of the recently validated TetraQuark Hadrons.

Please see ToE_Demonstration.cdf or as an interactive web page) that takes you on an integrated visual journey from the abstract elements of hyper-dimensional geometry, algebra, particle and nuclear physics, and on to the atomic elements of chemistry. It requires the free Mathematica CDF plugin (25 Mb). ToE_Demonstration.nb is the same as CDF except it includes file I/O capability not available in the free CDF player. This requires a full Mathematica license (25 Mb).

outNBody-1b

outNBody-1a

QM-GR-N-Body

Meson

Baryon

TetraQuark

Added PMNS and CKM particle mixing matrix calculations to ToE_Demonstration.CDF

I’ve improved on a great Wolfram demonstration from Balázs Meszéna on Neutrino Oscillations by adding capabilities to view both the PMNS and CKM unitary triangle matrices, print and reference my ToE Neutrino mass predictions, which now accomodate the Koide relationships in particle masses.

Check out the new demonstrations using free interactive web plugin , .CDF, or .NB (for licensed Mathematica users) and social media integrations for comments, pages and posts.

This new pane (#5) presents the Unitarity of CP=T violations by combining the Lepton (Neutrino) Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS) with the Quark Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix calculations through the Quark-Lepton Complementarity (QLC).

I am also working to incorporate the Koide particle mass relations to MyToE predictions.

ToE_Demonstration

JGM_ToE-15t

Code snippets showing the CKM and PMNS matrix calculations based on the UI.

JGM_ToE-15v

JGM_ToE-15u

Avengers Tesseract Cosmic Cube

I finally got around to watching the Avengers movie and noticed that the Tesseract Cosmic Cube looked much like the hyper-dimensional projections that I make with laser etched optical crystal.

The blue light is projected from a multi-colored LED base.

While I do have tesseract projections, the E8 projection on my home page seems most similar. Here are a few blue crystal photos I’ve taken that are also similar.

DSCN0934

IMG_2011_05_13_1042a

IMG_2011_05_13_1054a

IMG_2011_05_13_1029a

IMG_2011_05_13_1025a

DSCN0994