Tag Archives: H4

QuasiCrystals and Geometry

I found a 1995 book (PDF online) “QuasiCrystals and Geometry” by Marjorie Senechal. There were some very nice diffraction patterns that match rectified 4_21 E8 Polytope 12,18, and 30-gon projections. See my overlays below:

12-gon Rectified E8
quasi-Rect421-12gon0b
Diffraction
quasi-Rect421-12gon1b
Overlay
quasi-Rect421-12gon2b

18-gon Rectified E8
quasi-Rect421-18gon0b
Diffraction
quasi-Rect421-18gon1b
Overlay
quasi-Rect421-18gon2b

30-gon Rectified E8
quasi-Rect421-30gon0b
Diffraction
quasi-Rect421-30gon1b
Overlay
quasi-Rect421-30gon2b

and another 12-gon rectified E8 pattern overlay from M. & N. Koca’s in “12-fold Symmetric Quasicrystallography from affine E6, B6, and F4”:
koca0b

koca1b

koca2b

Nested polytopes with non-crystallographic symmetry

I’ve been following an interesting paper titled “Nested polytopes with non-crystallographic symmetry as projected orbits of extended Coxeter groups” which has used my E8 to H4 folding matrix as a basis for not only understanding Lie Algebras/Groups and hyper-dimensional geometry, but also the genetic protein / viral structures of life (very cool)!

The Nested Polytopes paper was first put into Arxiv in Nov of 2014 at about the same time I submitted my related paper on E8 to H4 folding to Vixra. I created this paper in response to discovering that my Rhombic Triacontahedron / QuasiCrystal (D6 projected to 3D using the E8 to H4 Folding Matrix to E8 to H4 folding) work on Wikipedia and this website was being used by Pierre-Philippe Dechant, John Baez and Greg Egan.

The Nested Polytopes paper has since undergone 4 revisions. The first three seemed to be typical (even minor) tweaks, but with a different author list/order in each. Yet, the latest (V4) seems to have a massive change, different author list and a completely different title “Orbits of crystallographic embedding of non-crystallographic groups and applications to virology”.

While I KNOW they were aware of my work, I wasn’t really surprised they never referenced it – as it isn’t published in academic press. I AM a bit surprised by the extensive changes to a single paper on arxiv. They have removed some of the E8 /H4 references (ref: Koca) and added completely different sources. Makes you wonder what’s up with that?

E8-8D-Polytopes-2

E8-6D-StarPolytopes-2

E8-4D-Polychora-2

E8-3D-Platonic-2

Fun with Tutte-Coxeter, Beordijk-Coxeter, E8 and H4

In reference to a G+ post by Baez (w/Greg Egan), it’s interesting to note the link to E8’s outer ring of the Petrie projection of a split real even E8, which creates a Beordijk-Coxeter helix.

Beordijk-Coxeter helix in 2D
helix2Db
Beordijk-Coxeter helix in 3D
cells6004b

The Beordijk-Coxeter helix connects the nearest 6 vertices on the outer ring. The Tutte-Coxeter graph is created in 3 (blk,grn,red) sets of edges by taking the (outer) ring and skipping (6,8,12) or counting (7,9,13) vertices. It shows there are 2 perfect pentagons and 1 pentagram (with different radii due to the difference in distance between the sets of vertices used).

e8ring8-1b

Of course, the crystallographic E8 is manifestly related to the 5 fold symmetry of the pentagon, with its integral relationship to the non-crystallographic H4 group (and its Coxeter-Dynkin diagram) through E8 to H4 folding using the Golden ratio Phi.

It is interesting to note that the skipping of 5+(1,3,7) vertices is similar to the creation of the 120 (240) vertex positions of H4 (E8) Petrie projection by adding to the 24 vertices of the 8-cell and 16-cell (which make up the self-dual 24-cell) the 96 vertices of the Snub 24-cell. This is done through 4 rotations skipping 5 vertices.

Also notice the (1,3,7) are the number of the imaginary parts of Complex, Quaternion, and Octonion numbers, also integrally related to E8.

snub-pics

Universal Time’s Arrow as a Broken Symmetry of an 8D Crystallographic E8 folding to self dual H4+H4φ 4D QuasiCrystal spacetime

Animations of Wolfram’s Cellular Automaton rule 224 in a 3D version of Conway’s Game of Life.

While this does not yet incorporate the E8 folding to 4D H4+H4φ construct, the notion of applying it, as the title suggests, to a fundamental particle physics simulation of a “Quantum Computational Universe” or an emergent (non)crystallographic genetic DNA (aka. Life) is an interesting thought…

Watch a few notional movies, some in left-right stereo 3D. Best viewed in HD mode.

More to come, soon!
outAI2

These are snapshots of all the different initial conditions on the rule 224. Each set of 25 has a different object style and/or color gradient selection.
AI 1-25

AI 26-50

AI 51-75

AI 76-100

AI 101-125

AI 126-150

AI 151-175

AI 176-200

AI 201-225

AI 226-250

AI 251-253

Playing around visualizing non-crystallographic DNA/RNA

I’ve got interaction between the DNA/RNA protein visualizations (e.g. “1F8V- PARIACOTO VIRUS REVEALS A DODECAHEDRAL CAGE OF DUPLEX RNA) with the VisibLie_E8 projections of crystallographic E8 to non-crystallographic H4 (and to dodecahedral H3 in 3 dimensions, of course).

These pics are a simple (naive) merge of the D6 projected using the E8 to H4 folding matrix and the Protein DB at http://www.rcsb.org/ for 1F8V).

outE80prot

DNAscreen

outDNA

outDNAprot

E8, H4, Quasi-Crystals, Penrose Tiling, Boerdijk-Coxeter Helices and an AMS blog post on the topic

This pic is an overlay of an image from Greg Egan on the AMS blog VisualInsight on top of one I created several years ago for the quasicrystal wikipedia page.

It uses my E8-H4 folding matrix to project E8 vertices to several interesting objects. The 5 dimensional 5-cube (Penteract) and the related 3D the Rhombic-Triacontahedron, as well as this 2D overlay on the Ho-Mg-Zn electron diffraction pattern.

Ho-Mg-Zn_E8-5Cube-baez-egan-overlay

E8 vertices projected to 2D pentagonal projection
E8-5Cube

5-cube in 3D
5-cube-2

6-cube edges projected to the Rhombic-Triacontahedron using 3 of 4 rows of my E8-H4 folding matrix.
6Cube-QuasiCrystal-low

Rhombic-Triacontahedron with inner edges removed
RhombicTricontahedron

The Boerdijk-Coxeter helix is also related to these structures through the Golden Ratio.

Edges on the outer ring of the E8 Petrie projection related to Boerdijk-Coxeter helix.
helix2Db

Same as above in 3D with the tetrahedral cell faces and 3D vertex shape-color-size based on quantum particle parameters from a theoretical physics model.
cells6004b

Same as above also showing the inner E8 ring Boerdijk-Coxeter helix.
inner-outerP
Platonic solids
E8-3D-Platonic-2

Analyzing individual Fermi 4 particle "cell interactions" in 3D on Boerdijk–Coxeter helix rings

cell-interaction

inner-outerP

The Boerdijk–Coxeter helix is a 4D helix (of 3D tetrahedral cells) that makes up the vertices on 4 of the concentric rings of E8 Petrie projection (or the H4 and H4φ rings of the 2 600 cells in E8).

Outer (Ring 4) of H4 in 2D with non-physics vertices of all 8 rings of E8 in the background

helix2Db

Outer (Ring 4) of H4 in 3D with physics vertices

cells6004b

Ring 3 of H4 in 3D with physics vertices

cells6003b

Ring 2 of H4 in 3D with physics vertices

cells6002b

Inner (Ring 1) of H4φ in 3D with physics vertices

cells6001a

Combined 4 rings of H4 in 3D with physics vertices

cells6001234-small

Outer (Ring 4) of H4φ in 3D with physics vertices
cells6004phib

Ring 3 of H4φ in 3D with physics vertices

cells6003phib

Ring 2 of H4φ in 3D with physics vertices

cells6002phib

Inner (Ring 1) of H4φ in 3D with physics vertices

cells6001phib

Combined 4 rings of H4φ in 3D with physics vertices

cells6001234phi-small

Combined 8 rings in 3D with physics vertices

cells6001234-phi-small

Boerdijk–Coxeter helix

The Boerdijk–Coxeter helix is a 4D helix (of 3D tetrahedral cells) that makes up the vertices on 4 of the concentric rings of E8 Petrie projection (or the H4 and H4φ rings of the 2 600 cells in E8).

Outer (Ring 4) of H4 in 2D with non-physics vertices of all 8 rings of E8 in the background

helix2Db

inner-outerP

Outer (Ring 4) of H4 in 3D with physics vertices

cells6004b

Ring 3 of H4 in 3D with physics vertices

cells6003b

Ring 2 of H4 in 3D with physics vertices

cells6002b

Inner (Ring 1) of H4φ in 3D with physics vertices

cells6001a

Combined 4 rings of H4 in 3D with physics vertices

cells6001234-small

Outer (Ring 4) of H4φ in 3D with physics vertices
cells6004phib

Ring 3 of H4φ in 3D with physics vertices

cells6003phib

Ring 2 of H4φ in 3D with physics vertices

cells6002phib

Inner (Ring 1) of H4φ in 3D with physics vertices

cells6001phib

Combined 4 rings of H4φ in 3D with physics vertices

cells6001234phi-small

Combined 8 rings in 3D with physics vertices

cells6001234-phi-small