Tag Archives: E8

Octonion triality testing

I am working on validating some theoretical work on the triality automorphisms of the split octonions. This is a post with preliminary work on that… for those who are interested 🙂

BTW – It requires the here.

An addendum to the original post (below):
octonion-duality-triality

[WolframCDF source=”http://theoryofeverything.org/TOE/JGM/octonion triality checks.cdf” width=”900″ height=”8000″ altimage=”http://theoryofeverything.org/TOE/JGM/octonion triality checks.png” altimagewidth=”900″ altimageheight=”8000″]

Visualizing E6 as a subgroup of E8 for a Leptoquark SUSY GUT?

MyToE was mentioned in a Luboš Motl blog post comment, so I thought I would throw out a few ideas and offer to help Luboš visualize the models/thinking around developing an E6 Leptoquark SUSY GUT.

Here are the E6 Dynkin related constructs, including the detail Hasse visualization.
outDynkinE6

For this post, I use Split Real Even (SRE) E8 vertices created by dot product of the 120 positive (and 120 negative roots) with the following Simple Roots Matrix (SRM), which generates the Cartan as well:
simple roots matrix

This is a list of E6 vertices as a subset of SRE E8 by taking off the orthogonal right-side 2 dimensions (or Dynkin nodes in red) vertices with identical entries).
intersection-E8-E6

This is an interesting E6 projection with basis vectors of:
X={2, -1, 1, 1/2, -1, -(1/2), 0, 0}
Y= {0, 0, Sqrt[3], Sqrt[3]/2, Sqrt[3], Sqrt[3]/2, 0, 0}
outE80E6

Adding a third Z={0,0,Sqrt[3],Sqrt[3]/2,Sqrt[3],Sqrt[3]/2,0,0}, we get a 3D projection:
outE80E6-3d

Luboš> “the maximum subgroup we may embed to E6 is actually SO(10)Ă—U(1).”

Since D5 (which is the same as E5 in terms of the Dynkin diagram topology) relates to SO(10), it is interesting to look at the complement of E6 vertices and the 40 D5 vertices contained in E6 (leaving 32):
complement-E6-D5

Here is the D5 Dynkin and its Cartan algebra:
outDynkinD5-Hasse

QuasiCrystals and Geometry

I found a 1995 book (PDF online) “QuasiCrystals and Geometry” by Marjorie Senechal. There were some very nice diffraction patterns that match rectified 4_21 E8 Polytope 12,18, and 30-gon projections. See my overlays below:

12-gon Rectified E8
quasi-Rect421-12gon0b
Diffraction
quasi-Rect421-12gon1b
Overlay
quasi-Rect421-12gon2b

18-gon Rectified E8
quasi-Rect421-18gon0b
Diffraction
quasi-Rect421-18gon1b
Overlay
quasi-Rect421-18gon2b

30-gon Rectified E8
quasi-Rect421-30gon0b
Diffraction
quasi-Rect421-30gon1b
Overlay
quasi-Rect421-30gon2b

and another 12-gon rectified E8 pattern overlay from M. & N. Koca’s in “12-fold Symmetric Quasicrystallography from affine E6, B6, and F4”:
koca0b

koca1b

koca2b

Nested polytopes with non-crystallographic symmetry

I’ve been following an interesting paper titled “Nested polytopes with non-crystallographic symmetry as projected orbits of extended Coxeter groups” which has used my E8 to H4 folding matrix as a basis for not only understanding Lie Algebras/Groups and hyper-dimensional geometry, but also the genetic protein / viral structures of life (very cool)!

The Nested Polytopes paper was first put into Arxiv in Nov of 2014 at about the same time I submitted my related paper on E8 to H4 folding to Vixra. I created this paper in response to discovering that my Rhombic Triacontahedron / QuasiCrystal (D6 projected to 3D using the E8 to H4 Folding Matrix to E8 to H4 folding) work on Wikipedia and this website was being used by Pierre-Philippe Dechant, John Baez and Greg Egan.

The Nested Polytopes paper has since undergone 4 revisions. The first three seemed to be typical (even minor) tweaks, but with a different author list/order in each. Yet, the latest (V4) seems to have a massive change, different author list and a completely different title “Orbits of crystallographic embedding of non-crystallographic groups and applications to virology”.

While I KNOW they were aware of my work, I wasn’t really surprised they never referenced it – as it isn’t published in academic press. I AM a bit surprised by the extensive changes to a single paper on arxiv. They have removed some of the E8 /H4 references (ref: Koca) and added completely different sources. Makes you wonder what’s up with that?

E8-8D-Polytopes-2

E8-6D-StarPolytopes-2

E8-4D-Polychora-2

E8-3D-Platonic-2

Fun with Tutte-Coxeter, Beordijk-Coxeter, E8 and H4

In reference to a G+ post by Baez (w/Greg Egan), it’s interesting to note the link to E8’s outer ring of the Petrie projection of a split real even E8, which creates a Beordijk-Coxeter helix.

Beordijk-Coxeter helix in 2D
helix2Db
Beordijk-Coxeter helix in 3D
cells6004b

The Beordijk-Coxeter helix connects the nearest 6 vertices on the outer ring. The Tutte-Coxeter graph is created in 3 (blk,grn,red) sets of edges by taking the (outer) ring and skipping (6,8,12) or counting (7,9,13) vertices. It shows there are 2 perfect pentagons and 1 pentagram (with different radii due to the difference in distance between the sets of vertices used).

e8ring8-1b

Of course, the crystallographic E8 is manifestly related to the 5 fold symmetry of the pentagon, with its integral relationship to the non-crystallographic H4 group (and its Coxeter-Dynkin diagram) through E8 to H4 folding using the Golden ratio Phi.

It is interesting to note that the skipping of 5+(1,3,7) vertices is similar to the creation of the 120 (240) vertex positions of H4 (E8) Petrie projection by adding to the 24 vertices of the 8-cell and 16-cell (which make up the self-dual 24-cell) the 96 vertices of the Snub 24-cell. This is done through 4 rotations skipping 5 vertices.

Also notice the (1,3,7) are the number of the imaginary parts of Complex, Quaternion, and Octonion numbers, also integrally related to E8.

snub-pics

My E8 F4 projection and so called "Sacred Geometry"

Please note, this is about the GEOMETRY used in what has come to be called “Sacred Geometry”. Upon further investigation, along with the Kabbalah’s “Tree of Life”, it seems even the Jewish “Star of David” (Solomon) is medieval and may not be sourced in authentic ancient Abrahamic theology.

As it stands, the so-called “sacred” origin of these, including the pentagon that shows up in the icosahedral/dodecahedral Platonic solids due to the Sqrt(5) Golden Ratio (Phi) relationship within my E8 to H4 folding, is likely medieval and mostly pagan. I am merely pointing out that E8 contains the geometry that many find “interesting” for whatever reason, and am not promoting the underlying cults that use them.

Video (Best in HD):

My E8 F4 projection w/blue triality edges and physics particle assignments:
StarOfDavid1

My E8 F4 projection with 6720 edge lines:
E8-F4mox1-black

My E8 F4 projection rectified:
F4Rect-Sacred-1a-StarOfDavid

Star Of David Overlay:
F4Rect-Sacred-1b-StarOfDavid

Metatron’s Cube Overlay:
F4Rect-Sacred-1a-Metatron

Flower of Life Overlay:
F4Rect-Sacred-1a-Flower

Kabbalah Tree of Life Overlay:
F4Rect-Sacred-1a-Tree

Copyright J Gregory Moxness 2015
Rectified E8 and F4 Triality (Original Work)

WikiMedia Commons source images:
Metatron’s Cube (User:Barfly2001)
Flower of Life (User:Life_of_Riley)
Tree of Life (User:AnonMoos)